Liu Zaigang, Kong Wenjun. Progress on acceleration algorithm of the computation for chemical reactions in turbulent combustion simulation[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 1-10. doi: 10.11729/syltlx20180123
Citation: Liu Zaigang, Kong Wenjun. Progress on acceleration algorithm of the computation for chemical reactions in turbulent combustion simulation[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 1-10. doi: 10.11729/syltlx20180123

Progress on acceleration algorithm of the computation for chemical reactions in turbulent combustion simulation

doi: 10.11729/syltlx20180123
  • Received Date: 2018-08-30
  • Rev Recd Date: 2019-03-14
  • Publish Date: 2019-08-25
  • To investigate the methods of accelerating the computation of chemical kinetics in turbulent combustion, the application of Dynamic Adaptive Chemistry (DAC) and exponential integrator with Krylov subspace approximation is discussed. In the large eddy simulation of a turbulent flame, using DAC can accelerate the computation of chemical kinetics. However, in the context of parallel combustion simulation, the loads on the different processors are extremely imbalanced, which limits its performance. For the exponential integrator with Krylov subspace approximation, the acceleration effect acts on each processor, which is beneficial to improve the global computational efficiency. Compared to that of the implicit scheme coupled with DAC and MTS, the accelerating performance of the exponential integrator with Krylov subspace approxi-mation under the same level of accuracy is more obvious.
  • loading
  • [1]
    Ihme M, Pitsch H. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model:2. Application in LES of Sandia flames D and E[J]. Combustion and Flame, 2008, 155(1-2):90-107. doi: 10.1016/j.combustflame.2008.04.015
    [2]
    Benim A C, Iqbal S, Meier W, et al. Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor[J]. Applied Thermal Engineering, 2017, 110:202-212. doi: 10.1016/j.applthermaleng.2016.08.143
    [3]
    Olbricht C, Stein O T, Janicka J, et al. LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry[J]. Fuel, 2012, 96(1):100-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1376d56355d324a1e57c710827c8c249
    [4]
    Donini A, Bastiaans R J M, van Oijen J A, et al. A 5-D implementation of FGM for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor[J]. Flow Turbulence and Combustion, 2017, 98(3):887-922. doi: 10.1007/s10494-016-9777-7
    [5]
    Zhang H, Ye T, Wang G, et al. Large eddy simulation of turbulent premixed swirling flames using dynamic thickened flame with tabulated detailed chemistry[J]. Flow Turbulence and Combustion, 2017, 98(3):841-885. doi: 10.1007/s10494-016-9791-9
    [6]
    Zhou X J, Jiang X, Martinez D M. The effects of chemical kinetic mechanisms on large eddy simulation (LES) of a nonpremixed hydrogen jet flame[J]. International Journal of Hydrogen Energy, 2016, 41(26):11427-11440. doi: 10.1016/j.ijhydene.2016.04.079
    [7]
    Srinivasan S, Menon S. Linear eddy mixing model studies of high karlovitz number turbulent premixed flames[J]. Flow Turbulence and Combustion, 2014, 93(2):189-219. doi: 10.1007/s10494-014-9542-8
    [8]
    Jangi M, Zhao X Y, Haworth D C, et al. Stabilization and liftoff length of a non-premixed methane/air jet flame dischar-ging into a high-temperature environment:An accelerated transported PDF method[J]. Combustion and Flame, 2015, 162(2):408-419. https://www.sciencedirect.com/science/article/abs/pii/S0010218014002375
    [9]
    Elbahloul S, Rigopoulos S. Rate-Controlled Constrained Equilibrium (RCCE) simulations of turbulent partially premixed flames (Sandia D/E/F) and comparison with detailed chemistry[J]. Combustion and Flame, 2015, 162(5):2256-2271. doi: 10.1016/j.combustflame.2015.01.023
    [10]
    Raman V, Pitsch H. A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry[J]. Proceedings of the Combustion Institute, 2007, 31:1711-1719. doi: 10.1016/j.proci.2006.07.152
    [11]
    Popov P P, Pope S B. Large eddy simulation/probability density function simulations of bluff body stabilized flames[J]. Combustion and Flame, 2014, 161(12):3100-3133. doi: 10.1016/j.combustflame.2014.05.018
    [12]
    Hiremath V, Lantz S R, Wang H F, et al. Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion[J]. Combustion and Flame, 2012, 159(10):3096-3109. doi: 10.1016/j.combustflame.2012.04.013
    [13]
    Zhang H W, Garmory A, Cavaliere D E, et al. Large Eddy Simulation/Conditional Moment Closure modeling of swirl-stabilized non-premixed flames with local extinction[J]. Proceedings of the Combustion Institute, 2015, 35:1167-1174. doi: 10.1016/j.proci.2014.05.052
    [14]
    Zhang H, Mastorakos E. Modelling local extinction in Sydney swirling non-premixed flames with LES/CMC[J]. Proceedings of the Combustion Institute, 2017, 36(2):1669-1676. https://www.sciencedirect.com/science/article/pii/S1540748916303091
    [15]
    Rittler A, Proch F, Kempf A M. LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models[J]. Combustion and Flame, 2015, 162(4):1575-1598. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6dea79083482522efe8ae0414b4698ca
    [16]
    Minotti A, Bruno C, Cozzi F. A LES simulation of a CH4/air microcombustor with detailed chemistry[J]. Combustion Science and Technology, 2011, 183(6):554-574. doi: 10.1080/00102202.2010.523031
    [17]
    Fooladgar E, Chan C K, Nogenmyr K J. An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for In-Situ-Adaptive Tabulation[J]. Computers & Fluids, 2017, 146:42-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d7c627c35e600c9655ed9526e19782e9
    [18]
    Lu T, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations[J]. Progress in Energy and Combustion Science, 2009, 35(2):192-215. doi: 10.1016/j.pecs.2008.10.002
    [19]
    Brown P N, Byrne G D, Hindmarsh A C. VODE, a variable-coefficient ODE solver[J]. Siam Journal on Scientific and Statistical Computing, 1989, 10(5):1038-1051. doi: 10.1137/0910062
    [20]
    Petzold L R. A description of DASSL: A differential/algebraic system sover[R]. Sandia National Laboratories, SAND82-8637, 1982.
    [21]
    Liu Z, Han W, Kong W, et al. LES modelling of turbulent non-premixed jet flames with correlated dynamic adaptive chemistry[J]. Combustion Theory and Modelling, 2018, 22(4):694-713. doi: 10.1080/13647830.2018.1447148
    [22]
    Tonse S R, Moriarty N W, Frenklach M, et al. Computational economy improvements in PRISM[J]. International Journal of Chemical Kinetics, 2003, 35(9):438-452. doi: 10.1002/kin.10140
    [23]
    Li G Y, Hu J S, Wang S W, et al. Random sampling-high dimensional model representation (RS-HDMR) and orthogona-lity of its different order component functions[J]. Journal of Physical Chemistry A, 2006, 110(7):2474-2485. doi: 10.1021/jp054148m
    [24]
    Li G, Rabitz H, Hu J, et al. Regularized random-sampling high dimensional model representation (RS-HDMR)[J]. Journal of Mathematical Chemistry, 2008, 43(3):1207-1232. doi: 10.1007/s10910-007-9250-x
    [25]
    Pope S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory and Modelling, 1997, 1(1):41-63. doi: 10.1080/713665229
    [26]
    Yang B, Pope S B. Treating chemistry in combustion with detailed mechanisms-In situ adaptive tabulation in principal directions premixed combustion[J]. Combustion and Flame, 1998, 112(1-2):85-112. doi: 10.1016/S0010-2180(97)81759-2
    [27]
    Contino F, Jeanmart H, Lucchini T, et al. Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:An effective method for solving combustion in engine simulations[J]. Proceedings of the Combustion Institute, 2011, 33(2):3057-3064. https://www.sciencedirect.com/science/article/pii/S1540748910003627
    [28]
    Sun W, Won S H, Ju Y. In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture[J]. Combustion and Flame, 2014, 161(8):2054-2063. doi: 10.1016/j.combustflame.2014.01.028
    [29]
    Lefkowitz J K, Uddi M, Windom B C, et al. In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor[J]. Proceedings of the Combustion Institute, 2015, 35(3):3505-3512. https://www.sciencedirect.com/science/article/pii/S154074891400385X
    [30]
    Peters N, Kee R J. The computation of stretched laminar methane air diffusion flames using a reduced 4-step mechanism[J]. Combustion and Flame, 1987, 68(1):17-29. https://www.sciencedirect.com/science/article/abs/pii/0010218087900629
    [31]
    Chen J Y. A general procedure for constructing reduced reaction mechanisms with given independent relations[J]. Combustion Science and Technology, 1988, 57(1-3):89-94. doi: 10.1080/00102208808923945
    [32]
    Ju Y, Niioka T. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer[J]. Combustion and Flame, 1994, 99(2):240-246. https://www.sciencedirect.com/science/article/abs/pii/0010218094901279?via=ihub&cc=y
    [33]
    Law C K. Combustion physics[M]. New York:Cambridge University Press, 2006.
    [34]
    Lam S H, Goussis D A. The CSP method for simplifying kinetics[J]. International Journal of Chemical Kinetics, 1994, 26(4):461-486. doi: 10.1002/kin.550260408
    [35]
    Maas U, Pope S B. Simplifying chemical kinetics:Intrinsic low-dimensional manifolds in composition space[J]. Combustion and Flame, 1992, 88(3):239-264. doi: 10.1016-0010-2180(92)90034-M/
    [36]
    Lu T F, Law C K. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30:1333-1341. doi: 10.1016/j.proci.2004.08.145
    [37]
    Lu T F, Law C K. On the applicability of directed relation graphs to the reduction of reaction mechanisms[J]. Combustion and Flame, 2006, 146(3):472-483. doi: 10.1016/j.combustflame.2006.04.017
    [38]
    Sun W T, Chen Z, Gou X L, et al. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms[J]. Combustion and Flame, 2010, 157(7):1298-1307. doi: 10.1016/j.combustflame.2010.03.006
    [39]
    Gou X L, Chen Z, Sun W T, et al. A dynamic adaptive chemistry scheme with error control for combustion modeling with a large detailed mechanism[J]. Combustion and Flame, 2013, 160(2):225-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3ec5c8ad533b33eeafa960c21541644
    [40]
    Wang W, Gou X L. An improved path flux analysis with multi generations method for mechanism reduction[J]. Combustion Theory and Modelling, 2016, 20(2):203-220. doi: 10.1080/13647830.2015.1117660
    [41]
    He K, Androulakis I P, Ierapetritou M G. On-the-fly reduction of kinetic mechanisms using element flux analysis[J]. Chemical Engineering Science, 2010, 65(3):1173-1184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66f189777c234022e451d3fc1d5607c1
    [42]
    Androulakis I P, Grenda J M, Bozzelli J W. Time-integrated pointers for enabling the analysis of detailed reaction mechanisms[J]. Aiche Journal, 2004, 50(11):2956-2970. doi: 10.1002/aic.10263
    [43]
    Zhang S, Broadbelt L J, Androulakis I P, et al. Comparison of biodiesel performance based on HCCI engine simulation using detailed mechanism with on-the-fly reduction[J]. Energy & Fuels, 2012, 26(2):976-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ded211921909b7aa7276d8bcdb445647
    [44]
    Gao X, Yang S, Sun W. A global pathway selection algorithm for the reduction of detailed chemical kinetic mechanisms[J]. Combustion and Flame, 2016, 167:238-247. doi: 10.1016/j.combustflame.2016.02.007
    [45]
    Schwer D A, Lu P, Green W H. An adaptive chemistry approach to modeling complex kinetics in reacting flows[J]. Combustion and Flame, 2003, 133(4):451-465. doi: 10.1016/S0010-2180(03)00045-2
    [46]
    Liang L, Stevens J G, Farrell J T. A dynamic multi-zone partitioning scheme for solving detailed chemical kinetics in reactive flow computations[J]. Combustion Science and Technology, 2009, 181(11):1345-1371. doi: 10.1080/00102200903190836
    [47]
    Liang L, Stevens J G, Raman S, et al. The use of dynamic adaptive chemistry in combustion simulation of gasoline surrogate fuels[J]. Combustion and Flame, 2009, 156(7):1493-1502. doi: 10.1016/j.combustflame.2009.02.008
    [48]
    Ren Z, Xu C, Lu T, et al. Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations[J]. Journal of Computational Physics, 2014, 263:19-36. doi: 10.1016/j.jcp.2014.01.016
    [49]
    Liang L, Stevens J G, Farrell J T. A dynamic adaptive chemistry scheme for reactive flow computations[J]. Proceedings of the Combustion Institute, 2009, 32(1):527-534. https://www.sciencedirect.com/science/article/pii/S1540748908000941
    [50]
    Yang H T, Ren Z Y, Lu T F, et al. Dynamic adaptive chemistry for turbulent flame simulations[J]. Combustion Theory and Modelling, 2013, 17(1):167-183. doi: 10.1080/13647830.2012.733825
    [51]
    Ren Z Y, Liu Y F, Lu T F, et al. The use of dynamic adaptive chemistry and tabulation in reactive flow simulations[J]. Combustion and Flame, 2014, 161(1):127-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1026da2ed0980362210dd0176c0f6768
    [52]
    Liang Y W, Pope S B, Pepiot P. A pre-partitioned adaptive chemistry methodology for the efficient implementation of combustion chemistry in particle PDF methods[J]. Combustion and Flame, 2015, 162(9):3236-3253. doi: 10.1016/j.combustflame.2015.05.012
    [53]
    刘再刚, 杨帆, 孔文俊.基于CO-DAC的合成气反应极限分析[J].燃烧科学与技术, 2017, 23(1):61-67. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201701010

    Liu Z G, Yang F, Kong W J. Reaction limit analysis of syngas based on CO-DAC method[J]. Journal of Combustion Science and Technology, 2017, 23(1):61-67. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201701010
    [54]
    Oluwole O O, Ren Z, Petre C, et al. Decoupled species and reaction reduction:An error-controlled method for Dynamic Adaptive Chemistry simulations[J]. Combustion and Flame, 2015, 162(5):1934-1943. doi: 10.1016/j.combustflame.2014.12.012
    [55]
    Sun W, Gou X, El-Asrag H A, et al. Multi-timescale and correlated dynamic adaptive chemistry modeling of ignition and flame propagation using a real jet fuel surrogate model[J]. Combustion and Flame, 2015, 162(4):1530-1539. doi: 10.1016/j.combustflame.2014.11.017
    [56]
    Aceves S M, Martinez-Frias J, Flowers D L, et al. A decoupled model of detailed fluid mechanics followed by detailed chemical kinetics for prediction of iso-octane HCCI combustion[R]. SAE Technical Paper, 2001-01-3612, 2001.
    [57]
    Goldin G M, Ren Z, Zahirovic S. A cell agglomeration algorithm for accelerating detailed chemistry in CFD[J]. Combustion Theory and Modelling, 2009, 13(4):721-739. doi: 10.1080/13647830903154542
    [58]
    Xie W, Lu Z, Ren Z, et al. Dynamic adaptive chemistry via species time-scale and Jacobian-aided rate analysis[J]. Proceedings of the Combustion Institute, 2017, 36(1):645-653. https://www.sciencedirect.com/science/article/pii/S1540748916303637
    [59]
    Li Z, Lewandowski M T, Contino F, et al. Assessment of on-the-fly chemistry reduction and tabulation approaches for the simulation of moderate or intense low-oxygen dilution combustion[J]. Energy & Fuels, 2018, 32(10):10121-10131.
    [60]
    Xie W, Lu Z, Ren Z, et al. Dynamic adaptive acceleration of chemical kinetics with consistent error control[J]. Combustion and Flame, 2018, 197:389-399. doi: 10.1016/j.combustflame.2018.08.018
    [61]
    Zhou D, Tay K L, Li H, et al. Computational acceleration of multi-dimensional reactive flow modelling using diesel/biodiesel/jet-fuel surrogate mechanisms via a clustered dynamic adaptive chemistry method[J]. Combustion and Flame, 2018, 196:197-209. doi: 10.1016/j.combustflame.2018.06.008
    [62]
    Zhou L, Zhong L, Qin W, et al. Application of cell agglomeration algorithm coupled with dynamic adaptive chemistry for transient engine simulation of diesel fuel[J]. Fuel, 2018, 234:1313-1321. doi: 10.1016/j.fuel.2018.07.155
    [63]
    Imren A, Haworth D C. On the merits of extrapolation-based stiff ODE solvers for combustion CFD[J]. Combustion and Flame, 2016, 174:1-15. doi: 10.1016/j.combustflame.2016.09.018
    [64]
    Yang S, Ranjan R, Yang V, et al. Parallel on-the-fly adaptive kinetics in direct numerical simulation of turbulent premixed flame[J]. Proceedings of the Combustion Institute, 2017, 36(2):2025-2032. doi: 10.1016/j.proci.2016.07.021
    [65]
    Perini F, Galligani E, Reitz R D. A study of direct and Krylov iterative sparse solver techniques to approach linear scaling of the integration of chemical kinetics with detailed combustion mechanisms[J]. Combustion and Flame, 2014, 161(5):1180-1195. doi: 10.1016/j.combustflame.2013.11.017
    [66]
    Lu T F, Law C K, Yoo C S, et al. Dynamic stiffness removal for direct numerical simulations[J]. Combustion and Flame, 2009, 156(8):1542-1551. doi: 10.1016/j.combustflame.2009.02.013
    [67]
    Gou X L, Sun W T, Chen Z, et al. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms[J]. Combustion and Flame, 2010, 157(6):1111-1121. doi: 10.1016/j.combustflame.2010.02.020
    [68]
    Zhou D, Yang W. A heterogeneous multiscale method for stiff combustion chemistry integration in reactive flows[J]. Combustion and Flame, 2018, 188:428-439. doi: 10.1016/j.combustflame.2017.09.039
    [69]
    Gao Y, Liu Y, Ren Z, et al. A dynamic adaptive method for hybrid integration of stiff chemistry[J]. Combustion and Flame, 2015, 162(2):287-295. doi: 10.1016/j.combustflame.2014.07.023
    [70]
    Hochbruck M, Ostermann A. Exponential integrators[J]. Acta Numerica, 2010, 19:209-286. doi: 10.1017/S0962492910000048
    [71]
    Tangman D Y, Gopaul A, Bhuruth M. Exponential time integration and Chebychev discretisation schemes for fast pricing of options[J]. Applied Numerical Mathematics, 2008, 58(9):1309-1319. doi: 10.1016/j.apnum.2007.07.005
    [72]
    Hochbruck M, Honig M, Ostermann A. Regularization of nonlinear Ⅲ-posed problems by exponential integrators[J]. ESAIM-Mathematical Modelling and Numerical Analysis, 2009, 43(4):709-720. doi: 10.1051/m2an/2009021
    [73]
    Tokman M, Loffeld J. Efficient design of exponential-Krylov integrators for large scale computing[J]. Procedia Computer Science, 2012, 1(1):229-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000004239135
    [74]
    Gaudreault S, Pudykiewicz J A. An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere[J]. Journal of Computational Physics, 2016, 322:827-848. doi: 10.1016/j.jcp.2016.07.012
    [75]
    Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later[J]. Siam Review, 2003, 45(1):3-49. doi: 10.1137/S00361445024180
    [76]
    Higham N J. The scaling and squaring method for the matrix exponential revisited[J]. Siam Journal on Matrix Analysis and Applications, 2005, 26(4):1179-1193. doi: 10.1137/04061101X
    [77]
    Saad Y. Analysis of some Krylov subspace approximations to the matrix exponential operator[J]. Siam Journal on Numerical Analysis, 1992, 29(1):209-228.
    [78]
    Sidje R B. Expokit:A software package for computing matrix exponentials[J]. Acm Transactions on Mathematical Software, 1998, 24(1):130-156. doi: 10.1145/285861.285868
    [79]
    Niesen J, Wright W M. Algorithm 919:A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators[J]. Acm Transactions on Mathematical Software, 2012, 38(3):1-19. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0907.4631
    [80]
    Lord G J, Stone D. New efficient substepping methods for exponential timestepping[J]. Applied Mathematics and Computation, 2017, 307:342-365. doi: 10.1016/j.amc.2017.02.052
    [81]
    Vo H D, Sidje R B. Implementation of variable parameters in the Krylov-based finite state projection for solving the chemical master equation[J]. Applied Mathematics and Computation, 2017, 293:334-344. doi: 10.1016/j.amc.2016.08.013
    [82]
    Bisetti F. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions[J]. Combustion Theory and Modelling, 2012, 16(3):387-418. doi: 10.1080/13647830.2011.631032
    [83]
    Curtis N J, Niemeyer K E, Sung C-J. An investigation of GPU-based stiff chemical kinetics integration methods[J]. Combustion and Flame, 2017, 179:312-324. doi: 10.1016/j.combustflame.2017.02.005
    [84]
    刘再刚, 孔文俊.求解刚性燃烧化学反应系统的Krylov子空间中的指数积分法[J].工程热物理学报, 2018, 39(9):2062-2071. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201809027

    Liu Z G, Kong W J. An exponential integrator in Krylov subspace to solve stiff combustion chemical reaction system[J]. Journal of Engineering Thermophysics, 2018, 39(9):2062-2071. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201809027
    [85]
    刘再刚, 隋春杰, 韩文虎, 等.基于CO-DAC反应机理简化的非预混射流火焰的大涡模拟[J].燃烧科学与技术, 2018, 24(1):39-45. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201801007

    Liu Z G, Sui C J, Han W H, et al. LES for turbulent non-premixed jet flame with CO-DAC reduction[J]. Journal of Combustion Science and Technology, 2018, 24(1):39-45. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201801007
    [86]
    Barlow R S, Frank J H, Karpetis A N, et al. Piloted methane/air jet flames:Transport effects and aspects of scalar structure[J]. Combustion and Flame, 2005, 143(4):433-449. doi: 10.1016/j.combustflame.2005.08.017
    [87]
    Yang S, Wang X J, Yang V, et al. Comparison of flamelet/progress-variable and finite-rate chemistry LES models in a preconditioning scheme[R]. AIAA-2017-0605, 2017.
    [88]
    Yang S, Wang X J, Yang V, et al. Comparison of finite-rate chemistry and flamelet/progress-variable models Ⅱ: Sandia Flame E[R]. AIAA-2018-1427, 2018.
    [89]
    Yang S, Ranjan R, Yang V, et al. Sensitivity of predictions to chemical kinetics models in a temporally evolving turbulent non-premixed flame[J]. Combustion and Flame, 2017, 183:224-241. doi: 10.1016/j.combustflame.2017.05.016
    [90]
    Wu K, Contino F, Yao W, et al. On the application of tabulated dynamic adaptive chemistry in ethylene-fueled supersonic combustion[J]. Combustion and Flame, 2018, 197:265-275. doi: 10.1016/j.combustflame.2018.08.012
    [91]
    Contino F, Lucchini T, D'errico G, et al. Simulations of advanced combustion modes using detailed chemistry combined with tabulation and mechanism reduction techniques[J]. SAE International Journal of Engines, 2012, 5:185-196. doi: 10.4271/2012-01-0145
    [92]
    Zhou L, Lu Z, Ren Z Y, et al. Numerical analysis of ignition and flame stabilization in an n-heptane spray flame[J]. International Journal of Heat and Mass Transfer, 2015, 88:565-571. doi: 10.1016/j.ijheatmasstransfer.2015.05.003
    [93]
    Lu Z, Zhou L, Ren Z Y, et al. Effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame simulated with dynamic adaptive chemistry[J]. Flow Turbulence and Combustion, 2016, 97(2):609-629. doi: 10.1007/s10494-015-9702-5
    [94]
    Huang Y, Lu Z, Zheng L. Study of SiCl4/H2/O2 chemical kinetics and its application to fused silica glass synthesis[J]. Combustion Science and Technology, 2018, 190(10):1861-1885. doi: 10.1080/00102202.2018.1476349
    [95]
    Shi Y, Liang L, Ge H-W, et al. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes[J]. Combustion Theory and Modelling, 2010, 14(1):69-89. doi: 10.1080/13647830903548834
    [96]
    Lu L, Lantz S R, Ren Z, et al. Computationally efficient implementation of combustion chemistry in parallel PDF calculations[J]. Journal of Computational Physics, 2009, 228(15):5490-5525. doi: 10.1016/j.jcp.2009.04.037
    [97]
    Stewart G W. A Krylov-Schur algorithm for large eigenproblems[J]. Siam Journal on Matrix Analysis and Applications, 2002, 23(3):601-614. doi: 10.1137/S0895479800371529
    [98]
    Hochbruck M, Lubich C, Selhofer H. Exponential integrators for large systems of differential equations[J]. Siam Journal on Scientific Computing, 1998, 19(5):1552-1574. doi: 10.1137/S1064827595295337
    [99]
    Liu Z G, Consalvi J L, Kong W J. An exponential integrator with Schur-Krylov approximation to accelerate combustion chemistry computation[J]. Combustion and Flame, 2019, 203:180-189. doi: 10.1016/j.combustflame.2019.01.031
    [100]
    Lu L Y, Pope S B. An improved algorithm for in situ adaptive tabulation[J]. Journal of Computational Physics, 2009, 228(2):361-386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=331d60857be5dc1d0c837e9e87da1b43
    [101]
    Perini F, Galligani E, Reitz R D. An analytical Jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms[J]. Energy & Fuels, 2012, 26(8):4804-4822. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd64e2068cd2c5edca40b7a696028b74
    [102]
    Smith G P, Golden D M, Frenklach M, et al. GRI-Mech 3.0.[EB/OL]. (1999-07-30)[2018-08-27]. http://www.me.berkeley.edu/gri_mech.
    [103]
    Wang H, You X, Joshi A V, et al. USC Mech Version Ⅱ: High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds.[EB/OL]. (2007-05)[2018-08-27]. http://ignis.usc.edu/USC_Mech_II.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (218) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return