Gao Wei, Zhang Chi, He Chunlong, et al. Progress on spray autoignition under the extreme conditions in aero-engines[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 29-40. doi: 10.11729/syltlx20180120
Citation: Gao Wei, Zhang Chi, He Chunlong, et al. Progress on spray autoignition under the extreme conditions in aero-engines[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 29-40. doi: 10.11729/syltlx20180120

Progress on spray autoignition under the extreme conditions in aero-engines

doi: 10.11729/syltlx20180120
  • Received Date: 2018-08-24
  • Rev Recd Date: 2018-10-31
  • Publish Date: 2019-02-25
  • The lean premixed prevaporized (LPP) combustion is the most advanced low emission combustion technology of civil aero-engines. However, the LPP technology faces the risks of autoignition and flashback during the premixing process, which becomes the bottle-neck restricting the development of LPP technology. Under the extreme inlet conditions of high temperature (up to 1000K) and high pressure (up to 6MPa) in the aero-engine combustor, the autoignition in premixed and prevaporised section is a liquid fuel spray autoignition process in confinement. This paper reviews and analyzes the experimental research on the spray autoignition. Firstly, the spray autoignition process in the LPP combustor of civil aero-engine is described, the influencing factors and characteristics of spray autoignition are analyzed, and the key research directions are pointed out. Secondly, the study on the chemical autoignition is briefly reviewed and the effects of parameters on chemical autoignition are summarized. Finally, the experimental research status of spray autoigniton is analyzed, the research progress of autoigniton randomness under the extreme conditions in aero-engines is demonstrated, and the issues and subsequent developments are discussed.
  • loading
  • [1]
    Lefebvre A, Balla D R, Bahr D W. Gas turbine combustion:alternative fuels and emissions[M]. Boca Raton, FL:CRC Press, 2010.
    [2]
    林宇震, 许全宏, 刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社, 2008.

    Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing:National Defense Industry Press, 2008.
    [3]
    International Civil Aviation Organization. ICAO environmental report 2010: aviation and climate change[S]. Montreal: ICAO Environment Branch, 2010.
    [4]
    张驰, 林宇震, 徐华胜, 等.民用航空发动机低排放燃烧室技术发展现状及水平[J].航空学报, 2014, 35(2):332-350. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402004

    Zhang C, Lin Y Z, Xu H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):332-350. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402004
    [5]
    Imamura A, Yoshida M, Kawano M, et al. Research and development of a LPP combustor with swirling flow for low NOx[R]. AIAA-2001-3311, 2001.
    [6]
    Gokulakrishnan P, Ramotowski M J, Gaines G, et al. Experimental study of NOx formation in lean, premixed, prevapo-rized combustion of fuel oils at elevated pressures[R]. ASME GT2007-27552, 2007.
    [7]
    Foust M J, Thomsen D, Stickles R, et al. Development of the GE aviation low emissions ATPS combustor for next generation aircraft engines[R]. AIAA-2012-0936, 2012. https://www.researchgate.net/publication/271374955_Development_of_the_GE_Aviation_Low_Emissions_TAPS_Combustor_for_Next_Generation_Aircraft_Engines
    [8]
    Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR[C]//Proc of the 9th Annual International Energy Conversion Engineering Conference. 2011.
    [9]
    Fu Z B, Lin Y Z, Li J B, et al. Experimental investigation on ignition performance of LESS combustor[R]. ASME GT2011-45786, 2011.
    [10]
    Fu Z B, Lin Y Z, Li L, et al. Experimental and numerical studies of a lean-burn internally-staged combustor[J]. Chinese Journal of Aeronautics, 2014, 27(3):488-496. doi: 10.1016/j.cja.2013.12.017
    [11]
    付镇柏, 林宇震, 张驰, 等.中心分级燃烧室预燃级燃烧性能试验[J].航空动力学报, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201409024

    Fu Z B, Lin Y Z, Zhang C, et al. Experiment of combustion performance of internally-staged combustor pilot stage[J]. Journal of Aerospace Power, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201409024
    [12]
    秦皓, 丁志磊, 李海涛, 等. LESS燃烧室非定长旋流流动[J].航空动力学报, 2015, 30(7):1566-1575. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507007.htm

    Qin H, Ding Z L, Li H T, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7):1566-1575. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507007.htm
    [13]
    Li L, Lin Y Z, Fu Z B, et al. Emission characteristics of a mo-del combustor for aero gas turbine application[J]. Experimental Thermal and Fluid Science, 2016, 72:235-248. doi: 10.1016/j.expthermflusci.2015.11.012
    [14]
    Wang B, Zhang C, Lin Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbine and Power, 2016, 139(1):011501. doi: 10.1115/1.4034154
    [15]
    Wang B, Zhang C, Hui X, et al. Influence of sleeve angle on the LBO performance of TeLESS-Ⅱ combustor[R]. AIAA-2016-4693, 2016.
    [16]
    王智勇, 王波, 韩啸, 等. TeLESS Ⅱ低排放燃烧室预燃级设计对排放的影响[J].航空动力学报, 2017, 32(7):1561-1568. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707004

    Wang Z Y, Wang B, Han X, et al. Effect of pilot design in the TELESS Ⅱ low emission combustor on emission[J]. Journal of Aerospace Power, 2017, 32(7):1561-1568. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707004
    [17]
    Guin C. Characterization of autoignition and flashback in premixed injection systems AVT[C]//Proc of the Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels Lisbon. 1998.
    [18]
    Lefebvre A H, Freeman W G, Cowell L H. Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures[R]. NASA-CR-175064, 1986.
    [19]
    毛茂华, 黄春峰.罗·罗公司民用航空发动机技术传承与创新[J].燃气涡轮试验与研究, 2017, 30(6):56-60. doi: 10.3969/j.issn.1672-2620.2017.06.011

    Mao M H, Huang C F. The development trends of Rolls-Royce's civil aero-engine technologies[J]. Gas Turbine Experiment and Research, 2017, 30(6):56-60. doi: 10.3969/j.issn.1672-2620.2017.06.011
    [20]
    赵永胜.受限流动空间内燃料横向喷射的自燃与回火特性研究[D].北京: 北京航空航天大学, 2016.

    Zhao Y S. Autoignition and flashback characteristics of fuel injected into crossflow in the confined flow space[D]. Beijng: Beihang University, 2016.
    [21]
    Nejad A S, Schetz J A. The effect of viscosity and surface tension of liquid injectants on the structural characteristics of the plume in a supersonic airstream[R]. AIAA-82-0253, 1982.
    [22]
    方亚梅, 王全德, 王繁, 等.正十二烷高温燃烧详细化学动力学机理的系统简化[J].物理化学学报, 2012, 28(11):2536-2542. doi: 10.3866/PKU.WHXB201208201

    Fang Y M, Wang Q D, Wang F, et al. Reduction of the detailed kinetic mechanism for high-temperature combustion of n-decane[J]. Acta Physico-Chimica Sinica, 2012, 28(11):2536-2542. doi: 10.3866/PKU.WHXB201208201
    [23]
    甯红波, 李泽荣, 李象远.燃烧反应动力学研究进展[J].物理化学学报, 2016, 32(1):131-153. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201601011

    Ning H B, Li Z R, Li X Y. Progress in combustion kinetics[J]. Acta Physico-Chimica Sinica, 2016, 32(1):131-153. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201601011
    [24]
    张巍锋, 鲜雷勇, 雍康乐, 等.正十一烷/空气在宽温度范围下着火延迟的激波管研究[J].物理化学学报, 2016, 32(9):2216-2222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201609012

    Zhang W F, Xian L Y, Yong K L, et al. A shock tube study of n-undecane/air ignition delays over a wide range of temperatures[J]. Acta Physico-Chimica Sinica, 2016, 32(9):2216-2222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201609012
    [25]
    Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times:shock tube experiments over wide conditions and surrogate model predictions[J]. Combustion and Flame, 2008, 152(1-2):125-143. doi: 10.1016/j.combustflame.2007.06.019
    [26]
    Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times and modeling: studies at high pressures and low temperatures in a shock tube[R]. AIAA-2007-5671, 2007.
    [27]
    Vasu S S, Davidson D F, Hanson R K. Shock tube ignition delay times and modeling of jet fuel mixtures[R]. AIAA-2006-4402, 2006.
    [28]
    勾华杰, 王苏, 崔季平, 等. JP10点火延时的激波管实验测量[C]//第十二届全国激波与激波管会议论文集. 2006.

    Gou H J, Wang S, Cui J P, et al. Ignition delay of JP10 using shock tube[C]//Proc of the 12th national shock and shock tube conference. 2006.
    [29]
    廖钦.煤油及其裂解产物自点火现象的初步实验研究[D].合肥: 中国科学技术大学; 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm

    Liao Q. Experimental studies on autoignition phenomena of ke-rosene and cracked kerosene in a shock tube[D]. Hefei: University of Science and Technology of China, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm
    [30]
    梁金虎, 王苏, 张灿, 等. RP-3航空煤油点火特性研究[J].力学学报, 2014, 46(3):352-360. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCXB201710002240.htm

    Liang J H, Wang S, Zhang C, et al. Studies on the autoignition characteristics of RP-3 aviation kerosene[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):352-360. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCXB201710002240.htm
    [31]
    廖钦, 徐胜利.雾化激波管研制和煤油点火延时测量[J].实验流体力学, 2009, 23(3):70-79. doi: 10.3969/j.issn.1672-9897.2009.03.015

    Liao Q, Xu S L. The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):70-79. doi: 10.3969/j.issn.1672-9897.2009.03.015
    [32]
    廖钦, 徐胜利, 李卫兵.不同压力煤油气溶胶点火延时的测量研究[J].中国科学技术大学学报, 2009, 39(6):631-637. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200906012

    Liao Q, Xu S L, Li W B. Study on ignition delay of kerosene aerosol in shock tube[J]. Journal of University of Science and Technology of China, 2009, 39(6):631-637. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200906012
    [33]
    Wang W J, Oehlschlaeger M A. A shock tube study of methyl decanoate autoignition at elevated pressures[J]. Combustion and Flame, 2012, 159(2):476-481. doi: 10.1016/j.combustflame.2011.07.019
    [34]
    Tang C L, Man X J, Wei L J, et al. Further study on the ignition delay times of propane-hydrogen-oxygen-argon mixtures:effect of equivalence ratio[J]. Combustion and Flame, 2013, 160(11):2283-2290. doi: 10.1016/j.combustflame.2013.05.012
    [35]
    Zhang C H, Li B, Rao F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3):3151-3158. doi: 10.1016/j.proci.2014.05.017
    [36]
    Davidson D F, Zhu Y, Shao J K, et al. Ignition delay time correlations for distillate fuels[J]. Fuel, 2017, 187:26-32. doi: 10.1016/j.fuel.2016.09.047
    [37]
    Kumar K, Sung C J. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures:Jet-A and JP-8[J]. Combustion and Flame, 2010, 157(4):676-685. doi: 10.1016/j.combustflame.2010.01.001
    [38]
    Ihara T, Qin X J, Tanaka T, et al. Auto ignition and knocking phenomena in stratified mixture of lean condition[R]. ASME HT2007-32736, 2007.
    [39]
    Kumar K, Sung C J. Autoignition of jet fuels under high pressure and low-to-intermediate temperatures[R]. AIAA-2009-1527, 2009.
    [40]
    Kumar K, Mittal G, Sung C J. Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions[J]. Combustion and Flame, 2009, 156(6):1278-1288. doi: 10.1016/j.combustflame.2009.01.009
    [41]
    Allen C, Toulson E, Tepe D, et al. Characterization of the effect of fatty ester composition on the ignition behavior of biodiesel fuel sprays[J]. Fuel, 2013, 111(3):659-669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08051426a953d619ae38f952efd89366
    [42]
    Valco D, Gentz G, Allen C, et al. Autoignition behavior of synthetic alternative jet fuels:an examination of chemical composition effects on ignition delays at low to intermediate temperatures[J]. Proceedings of the Combustion Institute, 2015, 35(3):2983-2991. doi: 10.1016/j.proci.2014.05.145
    [43]
    Valco D J, Min K, Oldani A. Low temperature autoignition of conventional jet fuels and surrogate jet fuels with targeted pro-perties in a rapid compression machine[J]. Proceedings of the Combustion Institute, 2016, 36(3):3687-3694. https://www.researchgate.net/publication/308978559_Low_temperature_autoignition_of_conventional_jet_fuels_and_surrogate_jet_fuels_with_targeted_properties_in_a_rapid_compression_machine?ev=auth_pub
    [44]
    Gokulakrishnan P, Klassen M S, Roby R J. Ignition characteri-stics of a fischer-tropsch synthetic jet fuel[R]. ASME GT2008-51211, 2008.
    [45]
    Holton M M, Gokulakrishnan P, Klassen M S, et al. Autoignition delay time measurements of methane, ethane, and propane pure fuels and methane-based fuel blends[R]. ASME GT2009-59309, 2009.
    [46]
    Gokulakrishnan P, Gaines G, Klassen M S, et al. Autoignition of aviation fuels experimental and modeling study[R]. AIAA-2007-5701. 2007.
    [47]
    Gokulakrishnan P, Gaines G, Currano J, et al. Experimental and kinetic modeling of kerosene-type fuels at gas turbine opera-ting conditions[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(3):655-663. doi: 10.1115/1.2436575
    [48]
    Joklik R, Fuller C, Gokulakrishnan P, et al. The effect of multi-component fuel evaporation on the ignition of JP-8[R]. ASME GT2010-22990, 2010.
    [49]
    Fuller C C, Gokulakrishnan P, Klassen M S, et al. Investigation of the effects of vitiated conditions on the autoignition of JP-8[R]. AIAA-2009-4925, 2009.
    [50]
    Beerer D, McDonell V, Samuelsen S, et al. Interpretation of flow reactor based ignition delay measurements[R]. ASME GT2009-60268, 2009.
    [51]
    Beerer D J, McDonell V G. An experimental and kinetic study of alkane autoignition at high pressures and intermediate temperatures[J]. Proceedings of the Combustion Institute, 2011, 33(1):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211740112
    [52]
    Christensen M K, Pal S, Woodward R D, et al. Flow reactor autoignition studies of iso-octane at high pressures and low to intermediate temperatures[R]. AIAA-2012-0500, 2012.
    [53]
    Schönborn A, Sayad P, Konnov A A, et al. Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging[J]. Combustion and Flame, 2013, 160(6):1033-1043. doi: 10.1016/j.combustflame.2013.01.018
    [54]
    Schönborn A, Sayad P, Konnov A A, et al. Autoignition of dimethyl ether and air in an optical flow-reactor[J]. Energy & Fuels, 2014, 28(6):4130-4138. http://cn.bing.com/academic/profile?id=4af4db50e252b51b4aa33628810c0c78&encoded=0&v=paper_preview&mkt=zh-cn
    [55]
    Wang H W, Oehlschlaeger M A. Autoignition studies of conventional and fischer-tropsch jet fuels[J]. Fuel, 2012, 98(6):249-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=585da8efbca79a537ad8e3933482e3ff
    [56]
    Kumar K, Sung C J. A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures[J]. Fuel, 2010, 89(10):2853-2863. doi: 10.1016/j.fuel.2010.05.021
    [57]
    刘伟雄, 杨阳, 邵菊香, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响[J].物理化学学报, 2009, 25(8):1618-1622. doi: 10.3866/PKU.WHXB20090809

    Liu W X, Yang Y, Shao J X, et al. Influence of H2O and CO2 contamination in air on the combustion properties of ethylene[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1618-1622. doi: 10.3866/PKU.WHXB20090809
    [58]
    梁金虎, 胡弘浩, 王苏, 等.空气污染组分H2O和CO2对乙烯点火性能的影响[J].推进技术, 2014, 35(2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402012.htm

    Liang J H, Hu H H, Wang S, et al. Effects of H2O and CO2 in vitiated air on ignition characteristics of ethylene[J]. Journal of Propulsion Technology, 2014, 35(2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402012.htm
    [59]
    Andrey S, Zhukov V, Sechenov V. Ignition delay times of Jet-A/air mixtures[R]. AIAA-2012-0501, 2012.
    [60]
    Aggarwal S K. A review of spray ignition phenomena:present status and future research[J]. Progress in Energy and Combustion Science, 1998, 24(6):565-600. doi: 10.1016/S0360-1285(98)00016-1
    [61]
    Khan Q S, Baek S W, Ghassemi H. On the autoignition and combustion characteristics of kerosene droplets at elevated pressure and temperature[J]. Combustion Science and Technology, 2007, 179(12):2437-2451. doi: 10.1080/00102200701484605
    [62]
    钟北京, 姚通, 文斐.基于特征值分析的正癸烷骨架和总包简化机理[J].物理化学学报, 2014, 30(2):210-216. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201402002

    Zhong B J, Yao T, Wen F. Skeletal and reduced mechanisms of n-decane simplified with eigenvalue analysis[J]. Acta Physico-Chimica Sinica, 2014, 30(2):210-216. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201402002
    [63]
    刘建文, 熊生伟, 马雪松, 等.正癸烷燃烧详细反应机理的构建及简化[J].推进技术, 2012, 33(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/tjjs201201011

    Liu J W, Xiong S W, Ma X S, et al. Development and reduction of n-decane detailed combustion reduction mechanism[J]. Journal of Propulsion Technology, 2012, 33(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/tjjs201201011
    [64]
    刘建文, 姚通, 钟北京, 等.正十四烷低温点火及燃烧机理的构建和简化[J].推进技术, 2017, 38(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701016

    Liu J W, Yao T, Zhong B J, et al. Development and reduction of n-tetradecane mechanism for low temperature ignition and combustion[J]. Journal of Propulsion Technology, 2017, 38(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701016
    [65]
    ASTM D6890, Standard test method for determination of ignition delay and derived cetane number (DCN) of diesel fuel oils by combustion in a constant volume chamber[S]. ASTM, 2012.
    [66]
    ASTM D7668, Standard test method for determination of derived cetane number (DCN) of diesel fuel oils-fixed range injection period, constant volume combustion chamber method[S]. ASTM, 2012.
    [67]
    Zheng Z L, Badawy T, Henein N, et al. Investigation of physical and chemical delay periods of different fuels in the ignition quality tester[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(6):061501. doi: 10.1115/1.4023607
    [68]
    Markides C N, Mastorakos E. An experimental study of hydrogen autoignition in a turbulent co-flow of heated air[J]. Proceedings of the Combustion Institute, 2005, 30(1):883-891. http://cn.bing.com/academic/profile?id=f30102563573f15cc66a5a07d3c38f4d&encoded=0&v=paper_preview&mkt=zh-cn
    [69]
    Wang Y, Rutland C J. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow[J]. Proceedings of the Combustion Institute, 2005, 30(1):893-900. https://www.researchgate.net/publication/222406951_Effects_of_temperature_and_equivalence_ratio_on_the_ignition_of_n-heptane_fuel_spray_in_turbulent_flow
    [70]
    Shinjo J, Umemura A. Droplet/turbulence interaction and early flame kernel development in an autoigniting realistic dense spray[J]. Proceedings of the Combustion Institute, 2013, 34(1):1553-1560. http://cn.bing.com/academic/profile?id=aed849190906fa3a7635861acd639884&encoded=0&v=paper_preview&mkt=zh-cn
    [71]
    Dooley S, Song H W, Heyne J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466. doi: 10.1016/j.combustflame.2011.11.002
    [72]
    Hui X, Kumar K, Sung C J, et al. Experimental studies on the combustion characteristics of alternative jet fuels[J]. Fuel, 2012, 98(3):176-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c8e0033273c329fa87d972ca9f2c56
    [73]
    Won S H, Veloo P S, Santner J, et al. Comparative evaluation of global combustion properties of alternative jet fuels[R]. AIAA-2013-0156, 2013.
    [74]
    Dooley S, Won S H, Jahangirian S, et al. The combustion kinetics of a synthetic paraffinic jet aviation fuel and a fundamentally formulated, experimentally validated surrogate fuel[J]. Combustion and Flame, 2012, 159(10):3014-3020. doi: 10.1016/j.combustflame.2012.04.010
    [75]
    Allen C, Valco D, Toulson E, et al. Ignition behavior and surrogate modeling of JP-8 and of camelina and tallow hydrotreated renewable jet fuels at low temperatures[J]. Combustion and Flame, 2013, 160(2):232-239. doi: 10.1016/j.combustflame.2012.10.008
    [76]
    Marek C J, Papathnkos L C, Verbulecz P W. Preliminary studies of autoignition and flashback in a premixing-prevaporizing flame tube using Jet-A fuel at lean equivalence ratios[R]. NASA-TM-X-3526, 1977.
    [77]
    Marek C J, Baker C E. High-pressure flame visualization of autoignition and flashback phenomena with liquid-fuel spray[R]. NASA-TM-83501, 1983.
    [78]
    Stringer F W, Clarke A E, Clarke J S. The spontaneous ignition of hydrocarbon fuels in a flowing system[C]. Proceedings of the Institution of Mechanical Engineers, 1969.
    [79]
    Sturgess G J. Advanced low-emissions catalytic combustor program, phase 1 final report[R]. NASA-CR-159656, 1981.
    [80]
    Hinkeldey O, Koch R, Bauer H J, et al. Laser based study of spray auto-ignition in a generic mixing duct[R]. ASME GT2008-50143, 2008.
    [81]
    Hinkeldey O, Schießl R, Cano-Wolff M, et al. Laser based study of auto-ignition of sprays in a continuous flow reactor[C]//Proc of the European Combustion Meeting. 2007.
    [82]
    Sims G J, Mistry S L, Wood J P, et al. A Study into the auto-ignition characteristics of hydrocarbon fuels with application to gas turbines[R]. ASME GT2008-50824, 2008.
    [83]
    Gordon R L, Mastorakos E. Autoignition of monodisperse biodiesel and diesel sprays in turbulent flows[J]. Experimental Thermal and Fluid Science, 2012, 43(3):40-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1531a20845cf7d522fa079141aba549a
    [84]
    Mastorakos E. Ignition of turbulent non-premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35(1):57-97. doi: 10.1016/j.pecs.2008.07.002
    [85]
    Williams A, Shcherbik D, Bibik O, et al. Autoignition of a Jet-A spray in a high temperature vitiated air flow[R]. ASME GT2015-42199, 2015.
    [86]
    徐兴平, 张孝春, 李江宁, 等.燃油在高温高速气流中自燃规律的研究[C].沈阳: 中国航空学会第十四届燃烧与传热传质学术交流会论文集. 2007.

    Xu X P, Zhang X C, Li J N, et al. Study onautoignition of fuel in high temperature and high speed airflow[C]//Proc of the 14th Academic Conference on Combustion and Heat Transfer of China Aviation Society. 2007.
    [87]
    Zhao Y S, Zhang C, Lin Y Z. Random behavor of kerosene spray autoignition in crossflow[R]. ASME GT2016-57043, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (305) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return