Liu Lu, Cao Wei. Stability and transition prediction of the hypersonic plate boundary layers for wall temperature distribution[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 41-48. doi: 10.11729/syltlx20180107
Citation: Liu Lu, Cao Wei. Stability and transition prediction of the hypersonic plate boundary layers for wall temperature distribution[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 41-48. doi: 10.11729/syltlx20180107

Stability and transition prediction of the hypersonic plate boundary layers for wall temperature distribution

doi: 10.11729/syltlx20180107
  • Received Date: 2018-08-01
  • Rev Recd Date: 2018-11-12
  • Publish Date: 2018-12-25
  • The transition prediction of the hypersonic boundary layer on a flat plate is investigated by using the eN method under three different wall conditions including the isothermal, adiabatic and wall temperature distribution conditions. The gas parameters are taken as the corresponding air parameters at the height of 30km with the incoming flow Mach numbers 4.5, 6.0 and 7.0. The calculation results are given and analyzed for four different cases of the wall temperature distribution. The initial disturbance amplitude is estimated to be 0.3‰. The transition is assumed to begin when the disturbance amplitude grows up to 1.5%. It can be seen that the transition location is most close to the leading edge in the case of the isothermal wall condition, and the transition location would move forward as the incoming flow Mach number increases. However, it would move backward as the incoming flow Mach number increases under the adiabatic wall condition. In the case of the wall temperature distribution condition, the transition location moves forward as the incoming flow Mach number increases. It is also found that the higher the wall temperature is, the further backward the transition location is (whereas, at Mach number 7.0, the result is different). In the adiabatic wall cases at the incoming flow Mach numbers 4.5 and 6.0, the transition locations are determined by the first mode waves, whereas the transition locations for the other cases are determined by the second mode waves.
  • loading
  • [1]
    Reshotko E. Transition issues for atmospheric entry[J]. Journal of Spacecraft & Rockets, 2008, 45:161-164. doi: 10.2514/1.29777
    [2]
    Kimmel R L. Aspects of hypersonic boundary layer transition control[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit. 2003.
    [3]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [4]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. doi: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-212. doi: 10.7638/kqdlxxb-2018.0017
    [5]
    Chen F J, Malik M R, Beckwith I E. Boundary-layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6):687-693. doi: 10.2514/3.10166
    [6]
    Malik M R, Balakumar P. Instability and transition in three-dimensional supersonic boundary layers[R]. AIAA-1992-5049, 1992.
    [7]
    Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack-with the improvement of eN method[J]. Science in China, 2009, 52(1):115-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900037613
    [8]
    贾文利.考虑真实气体效应高超音速钝锥边界层稳定性及转捩预测研究[D].天津: 天津大学, 2013.

    Jia W L. Prediction of stability and transition of hypersonic blunt cone boundary layer considering real gaseffect[D]. Tianjin: Tianjin University, 2013.
    [9]
    杨武兵, 沈清, 朱德华, 等.高超声速边界层转捩研究现状与趋势[J].空气动力学学报, 2018, 36(2):183-195. doi: 10.7638/kqdlxxb-2018.0011

    Yang W B, Shen Q, Zhu D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2):183-195. doi: 10.7638/kqdlxxb-2018.0011
    [10]
    Mack L M. Boundary-layer linear stability theory[R]. AGARD Report 709, 1984.
    [11]
    Stetson K F, Kimmel R L. On hypersonic boundary-layer stability[R]. AIAA-92-0737, 1992.
    [12]
    Stetson K F, Thompson E R, Donaldson J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part 5: tests with a cooled model[R]. AIAA-89-1895, 1989.
    [13]
    苏彩虹, 周恒.零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报[J].应用数学和力学, 2007, 28(5):505-513. doi: 10.3321/j.issn:1000-0887.2007.05.001

    Su C H, Zhou H. Stability analysis and transition prediction of hypersonic boundary layer over a blunt cone with small nose bluntness at zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(5):505-513. doi: 10.3321/j.issn:1000-0887.2007.05.001
    [14]
    曹伟.高超声速边界层的转捩问题[J].空气动力学学报, 2009, 27(5):516-523. doi: 10.3969/j.issn.0258-1825.2009.05.003

    Cao W. A study of the transition prediction of hypersonic boundary layer on plane and wedge flow[J]. Acta Aerodynamica Sinica, 2009, 27(5):516-523. doi: 10.3969/j.issn.0258-1825.2009.05.003
    [15]
    Kendall J M. Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3):290-299. doi: 10.2514/3.49694
    [16]
    Liu C, Cao W. Study of predicting aerodynamic heating for hypersonic boundary layer flow over a flat plate[J]. International Journal of Heat and Mass Transfer, 2017, 111:1079-1086. doi: 10.1016/j.ijheatmasstransfer.2017.04.001
    [17]
    Eckert E R G, Drake R M Jr. Analysis of heat and mass transfer[M]. New York:McGraw-Hill, Inc, 1972.
    [18]
    Holden M S, Bower D R, Chadwick K M. Measurements of boundary layer transition on cones at angle of attack for Mach numbers from 11 to 13[R]. AIAA-95-2294, 1995.
    [19]
    周恒, 赵耕夫.流动稳定性[M].北京:国防工业出版社, 2004.

    Zhou H, Zhao G F. Hydrodynamic stability[M]. Beijing:National Defence Industry Press, 2004.
    [20]
    罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028

    Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (139) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return