Fan Wei, Lu Wei, Wang Ke. Progress in the basic application issues of the pulse detonation rocket engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 1-13. doi: 10.11729/syltlx20180105
Citation: Fan Wei, Lu Wei, Wang Ke. Progress in the basic application issues of the pulse detonation rocket engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 1-13. doi: 10.11729/syltlx20180105

Progress in the basic application issues of the pulse detonation rocket engine

doi: 10.11729/syltlx20180105
  • Received Date: 2018-07-26
  • Rev Recd Date: 2018-10-13
  • Publish Date: 2019-02-25
  • The pulse detonation rocket engine is a propulsion system which obtains thrust by repeatedly generating detonation waves. It has the potential advantages of high thermal efficiency, simple structure and wide applications. In order to realize the potential advantages, various theoretical and engineering problems need to be solved before it goes into practical application. Numerous efforts have been made to establish a systematic set of theories and guidelines that could be universally applied to detonation-based propulsion designs, thereby laying solid theoretical and technical foundations for the birth of novel aerospace propulsion engines. The progress in some basic application issues in the past few decades is summarized, including the two-phase de-tonation engine technology, short-distance and low-loss detonation initiation technology, perfor-mance optimization and prototype integration. For the two-phase detonation engine, researches on the velocity deficit in two-phase detonation and researches on the atomization and fuel-oxidizer mixing are introduced. Some new ideas are developed in recent years. To pursue a better propulsion performance, liquid fuel is pre-heated to improve the atomization performance. For the short-distance and low-loss detonation initiation, researches on the detonation initiation improvements using solid obstacles, fluidic obstacles, hot jet or shock focusing are involved. Employing solid obstacles is the most common technology used in the pulse detonation engine, whereas employing fluid obstacles can accelerate the detonation initiation with lower loss of propulsion performance. For the performance optimization, the partial filling effect, high efficient nozzles and high frequency operation technologies are discussed. Partial filling and proper nozzles are proved effective to enhance the propulsion performance, while more accurate theory is needed. Recent researches indicate that pulse detonation engines can reach a high operating frequency in the valveless mode. For the prototype integration, a few pulse detonation rocket engines launched by different institutions and the relevant experimental researches are introduced as well.
  • loading
  • [1]
    Eidelman S, Grossmann W, Lottati I. Review of propulsion applications and numerical simulations of the pulsed detonation engine concept[J]. Journal of Propulsion and Power, 1991, 7(6):857-865. http://cn.bing.com/academic/profile?id=8e934e5ce54fe1e2d6420f563f27f364&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Kailasanath K. Recent developments in the research on pulse detonation engines[J]. AIAA Journal, 2003, 41(2):145-159. doi: 10.2514/2.1933
    [3]
    Kailasanath K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708. doi: 10.2514/2.1156
    [4]
    Roy G D, Frolov S M, Borisov A A, et al. Pulse detonation propulsion:challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672. doi: 10.1016/j.pecs.2004.05.001
    [5]
    Wolanski P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [6]
    Kuo K. Principles of combustion[M]. New York:John Wiley and Sons, 2005.
    [7]
    Dabora E K, Ragland K W, Nicholls J A. A study of heterogeneous detonations[J]. Astronautica Acta, 1966, 12(1):9-16. http://cn.bing.com/academic/profile?id=642548595e7e2859073560eedfe71372&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Dabora E K, Ragland K W, Nicholls J A. Drop size effects in spray detonations[J]. Proceedings of the Combustion Institute, 1969, 12:19-26. doi: 10.1016/S0082-0784(69)80388-7
    [9]
    Dabora E K. A model for spray detonations[J]. Acta Astronautica, 1979, 6:269-280. doi: 10.1016/0094-5765(79)90098-5
    [10]
    Ragland K W, Dabora E K, Nicholls J A. Observed structure of spray detonations[J]. Physics of Fluids, 1968, 11(11):2377-2388. doi: 10.1063/1.1691827
    [11]
    Borisov A A, Gelfand B E, Gubin S A, et al. The reaction zone of two-phase detonations[J]. Acta Astronautica, 1970, 15(5):411-417.
    [12]
    Pierce T H, Nicholls J A. Time variation in the reaction-zone structure of two-phase spray detonations[J]. Proceedings of the Combustion Institute, 1973, 14:1277-1284. doi: 10.1016/S0082-0784(73)80114-6
    [13]
    Gubin S A, Sichel M. Calculation of the detonation velocity of a mixture of liquid fuel droplets and a gaseous oxidizer[J]. Combustion Science and Technology, 1977, 17(3-4):109-117. doi: 10.1080/00102207708946821
    [14]
    Kailasanath K. Liquid-fueled detonations in tubes[J]. Journal of Propulsion and Power, 2006, 22(6):1261-1268. doi: 10.2514/1.19624
    [15]
    Bull D C, McLeod M A, Mizner G A. Detonation of unconfined fuel aerosols[C]//Oppenheim A K, Manson N, Soloukhim, et al. Gasdynamics of detonations and explosions. New York: American Institute of Aeronautics and Astronautics, 1981.
    [16]
    Bowen J R, Ragland K W, Steffes F J, et al. Heterogeneous detonation supported by fuel fogs or films[J]. Proceedings of the Combustion Institute, 1971, 12:1131-1139. http://d.old.wanfangdata.com.cn/Periodical/wjclxb200002025
    [17]
    Brophy C M, Netzer D, Forster L D. Detonation studies of JP-10 with oxygen and air for pulse detonation engine development[R]. AIAA-1998-4003, 1998. https://www.researchgate.net/publication/269053891_Detonation_studies_of_JP-10_with_oxygen_and_air_for_pulse_detonation_engine_development
    [18]
    Brophy C M, Sinibaldi J O, Damphousse P. Initiator perfor-mance for liquid-fueled pulse detonation engines[R]. AIAA-2002-0472, 2002. https://www.researchgate.net/publication/269212271_Initiator_performance_for_liquid-fueled_pulse_detonation_engines
    [19]
    Cheatham S, Kailasanath K. Single-cycle performance of idealized liquid-fueled pulse detonation engines[J]. AIAA Journal, 2005, 43(6):1276-1283. doi: 10.2514/1.11799
    [20]
    Cheatham S, Kailasanath K. Numerical modelling of liquid-fuelled detonations in tubes[J]. Combustion Theory and Modelling, 2005, 9(1):23-48. doi: 10.1080/13647830500051786
    [21]
    Tangirala V, Dean A, Peroomian O, et al. Investigations of two-phase detonations for performance estimations of a pulsed detonation engine[R]. AIAA-2007-1173, 2007. https://www.researchgate.net/publication/269204340_Investigations_of_Two-Phase_Detonations_for_Performance_Estimations_of_a_Pulsed_Detonation_Engine
    [22]
    Tucker K C, King P I, Schauer F R. Hydrocarbon fuel flash vaporization for pulsed detonation combustion[J]. Journal of Propulsion and Power, 2008, 24(4):788-796. doi: 10.2514/1.28412
    [23]
    Miser C L, King P I, Schauer F R. PDE flash vaporization system for hydrocarbon fuel using thrust tube waste heat[R]. AIAA-2005-3511, 2005. https://www.researchgate.net/publication/268482083_PDE_Flash_Vaporization_System_for_Hydrocarbon_Fuel_Using_Thrust_Tube_Waste_Heat
    [24]
    Helfrich T M, King P I, Hoke J L, et al. Effect of supercritical fuel injection on cycle performance of pulsed detonation engine[J]. Journal of Propulsion and Power, 2007, 23(4):748-755. doi: 10.2514/1.26551
    [25]
    Fan W, Yan C, Huang X, et al. Experimental investigation on two-phase pulse detonation engine[J]. Combustion and Flame, 2003, 133(4):441-450. doi: 10.1016/S0010-2180(03)00043-9
    [26]
    Li J L, Fan W, Yan C J, et al. Performance enhancement of a pulse detonation rocket engine[J]. Proceedings of the Combustion Institute, 2011, 33(2):2243-2254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c2e3ebb82220a855bb6e2d6f15ddc99
    [27]
    Tang H, Huang Y, Liu H, et al. Overview of current activities on PDE and pulse detonation propulsion in China[R]. AIAA-2008-4780, 2008. https://www.researchgate.net/publication/268481458_Overview_of_Current_Activities_on_PDE_and_Pulse_Detonation_Propulsion_in_China
    [28]
    范珍涔.液态碳氢燃料闪蒸及超临界喷射研究[D].西安: 西北工业大学, 2013.

    Fan Z C. Investigation on flash vaporization and supercritical jet of liquid hydrocarbon fuel[D]. Xi'an: Northwestern Polytechnical University, 2013.
    [29]
    靳乐. RP3航空煤油的超临界喷射、蒸发和爆震燃烧特性研究[D].西安: 西北工业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10699-1017819050.htm

    Jin L. Investigation on the supercritical injection, evaporation, and detonation characteristics of the RP-3 aviation kerosene[D]. Xi'an: Northwestern Polytechnical University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10699-1017819050.htm
    [30]
    Ciccarellia G, Dorofeev S. Flame acceleartion and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [31]
    Shchelkin K L. Some methods for control of detonation[J]. Soviet Journal of Technical Physcis, 1940, 10:823-827.
    [32]
    Schauer F, Stutrud J, Bradley R. Detonation initiation studies and performance results for pulsed detonation engine applications[R]. AIAA-2001-1129, 2001. https://www.researchgate.net/publication/267702869_AIAA_2001-1129_Detonation_Initiation_Studies_and_Performance_Results_for_Pulsed_Detonation_Engine_Applications
    [33]
    Meyer T R, Hoke J L, Brown M S. Expeimental study of deflagration-to-detonation enhancement techniques in a H2/air pulsed detonation engine[R]. AIAA-2002-3720, 2002. https://www.researchgate.net/publication/235070294_Experimental_Study_of_Deflagration-to-Detonation_Enhancement_Techniques_in_a_H2Air_Pulsed-Detonation_Engine
    [34]
    Lee S Y, Watts J, Saretto S, et al. Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines[J]. Journal of Propulsion and Power, 2004, 20(6):1026-1036. doi: 10.2514/1.11042
    [35]
    Cooper M, Jackson S, Austin J, et al. Direct experimental impulse measurements for detonations and deflagrations[J]. Journal of Propulsion and Power, 2002, 18(5):1033-1041. doi: 10.2514/2.6052
    [36]
    Brophy C M, Dvorak W T, Dausen D F, et al. Detonation initia-tion improvements using swept-ramp obstacles[R]. AIAA-2010-1336, 2010. https://www.researchgate.net/publication/269051453_Detonation_Initiation_Improvements_Using_Swept-Ramp_Obstacles
    [37]
    张彭岗.缓燃向爆震转捩特性研究[D].南京: 南京航空航天大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011254024.htm

    Zhang P G. An investigation on characteristic of the deflagration to detonation transition[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011254024.htm
    [38]
    严宇.脉冲爆震火箭发动机性能优化关键技术研究[D].西安: 西北工业大学, 2013.

    Yan Y. Investigations on key technology of a pulse detonation rocket engine's performance optimization[D]. Xi'an: Northwestern Polytechnical University, 2013.
    [39]
    Knox B, Forliti D, Stevens C, et al. A comparison of fluidic and physical obstacles for deflagration-to-detonation transition[R]. AIAA-2011-587, 2011. https://www.researchgate.net/publication/235030458_A_Comparison_of_Fluidic_and_Physical_Obstacles_for_Deflagration-to-Detonation_Transition
    [40]
    Knox B, Forliti D, Stevens C, et al. Unsteady flame speed control and DDT enhancement using fluidic obstacles[R]. AIAA-2010-151, 2010. https://www.researchgate.net/publication/269051011_Unsteady_Flame_Speed_Control_and_DDT_Enhancement_Using_Fluidic_Obstacles
    [41]
    McGarry J, Ahmed K. Laminar deflagrated flame interaction with a fluidic jet flow for deflagration-to-detonation flame acce-leration[R]. AIAA-2015-4096, 2015.
    [42]
    McGarry J P, Ahmed K A. Flame-turbulence interaction of laminar premixed deflagrated flames[J]. Combustion and Flame, 2017, 176:439-450. doi: 10.1016/j.combustflame.2016.11.002
    [43]
    Chambers J, Ahmed K. Turbulent flame augmentation using a fluidic jet for deflagration-to-detonation[J]. Fuel, 2017, 199:616-626. doi: 10.1016/j.fuel.2017.03.023
    [44]
    白桥栋, 翁春生.射流对爆轰波传播过程影响的理论研究[J].弹道学报, 2013, 25(3):83-87. doi: 10.3969/j.issn.1004-499X.2013.03.017

    Bai Q D, Weng C S. Theoretical study of influence of jet flow on propagation of detonation wave[J]. Journal of Ballistics, 2013, 25(3):83-87. doi: 10.3969/j.issn.1004-499X.2013.03.017
    [45]
    Zhao S, Fan Y, Lyu H, et al. Effects of a jet turbulator upon flame acceleration in a detonation tube[J]. Applied Thermal Engineering, 2017, 115:33-40. doi: 10.1016/j.applthermaleng.2016.12.068
    [46]
    彭瀚, 黄玥, 刘晨, 等.横向射流影响缓燃向爆震转捩过程的试验研究[J].航空学报, 2018, 39(2):121412. http://d.old.wanfangdata.com.cn/Periodical/hkxb201802003

    Peng H, Huang Y, Liu C, et al. Experimental study of effects of fluidic obstacle parameters on deflagration to detonation transition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121412. http://d.old.wanfangdata.com.cn/Periodical/hkxb201802003
    [47]
    李舒欣, 范玮, 王永佳, 等.流体障碍物对爆震管中初始火焰加速作用的数值研究[J].推进技术, 2017, 38(8):1893-1899. http://d.old.wanfangdata.com.cn/Periodical/tjjs201708028

    Li S X, Fan W, Wang Y J, et al. Numerical simulation of effects of fluidic obstacles on initial flame speed acceleration in a detonation tube[J]. Journal of Propulsion Technology, 2017, 38(8):1893-1899. http://d.old.wanfangdata.com.cn/Periodical/tjjs201708028
    [48]
    王永佳, 范玮, 李舒欣, 等.流体障碍物对爆震燃烧起爆性能影响的实验研究[J].推进技术, 2017, 38(3):646-652. http://d.old.wanfangdata.com.cn/Periodical/tjjs201703021

    Wang Y J, Fan W, Li S X, et al. Experimental study for effects of fluidic obstacles on detonation initiation performance[J]. Journal of Propulsion Technology, 2017, 38(3):646-652. http://d.old.wanfangdata.com.cn/Periodical/tjjs201703021
    [49]
    Lieberman D H, Parkiny K L, Shepherd J E. Detonation initiation by a hot turbulent jet for use in pulse detonation engines[R]. AIAA-2002-3909, 2002.
    [50]
    李建玲, 范玮, 李强, 等.火焰射流点火起爆的实验探索[J].燃烧科学与技术, 2009, 15(5):461-465. doi: 10.3321/j.issn:1006-8740.2009.05.015

    Li J L, Fan W, Li Q, et al. Experimental investigation on detonation initiation by flame jet[J]. Journal of Combustion Science and Technology, 2009, 15(5):461-465. doi: 10.3321/j.issn:1006-8740.2009.05.015
    [51]
    Brophy C M, Wernert L T S, Sinibaldil J O. Performance characterization of a valveless pulse detonation engine[R]. AIAA-2003-1344, 2003.
    [52]
    Li C, Kailasanath K. Detonation transmission and transition in channels of different sizes[J]. Proceedings of the Combustion Institute, 2000, 28(1):603-609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC028008383
    [53]
    Sorin R, Zitoun R, Khasainov B, et al. Detonation diffraction through different geometries[J]. Shock Waves, 2009, 19(1):11-23. doi: 10.1007/s00193-008-0179-1
    [54]
    Yatsufusa T, Ohira M, Yamamoto S i, et al. Development of liquid-fuel initiator for liquid-fuel PDE[R]. AIAA-2004-1213, 2004.
    [55]
    Wang Z W, Zhang Y, Chen X G, et al. Investigation of hot jet effect on detonation initiation characteristics[J]. Combustion Science and Technology, 2016, 189(3):498-519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2016.1225729
    [56]
    He J N, Fan W, Chi Y Q, et al. A comparative study on millimeter-scale flame jet and detonation diffraction in a rectangular chamber[R]. AIAA-2017-2149, 2017.
    [57]
    Jackson S I, Shepherd J E. Detonation initiation in a tube via imploding toroidal shock waves[J]. AIAA Journal, 2008, 46(9):2357-2367. doi: 10.2514/1.35569
    [58]
    Li C, Kailasanath K. Detoantion initiation in pulse detonation engines[R]. AIAA-2003-1170, 2003.
    [59]
    Li C, Kailasanath K. Detonation initiation by annular-jet-induced imploding shocks[J]. Journal of Propulsion and Power 2005, 21(1):183-186. doi: 10.2514-1.5463/
    [60]
    Levin V A, Nechaev J N, Tarasov A I. A new approach to organizing operation cycles in pulse detonation engines[C]//High-Speed Deflagration and Detonation: Fundamentals and Control. Moscow, 2001.
    [61]
    曾昊, 何立明, 章雄伟, 等.环形射流初始压力对激波聚焦起爆的影响分析[J].航空动力学报, 2010, 25(9):1964-1970. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201009007

    Zeng H, He L M, Zhang X W, et al. Investigation on the influence of jet pressure on detonation initiation via imploding annular shock waves[J]. Journal of Aerospace Power, 2010, 25(9):1964-1970. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201009007
    [62]
    曾昊, 何立明, 章雄伟, 等.横向爆震射流起爆爆震过程的数值模拟[J].应用力学学报, 2010, 27(3):543-549. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201003021

    Zeng H, He L M, Zhang X W, et al. Simulation of transverse detonation jet initiation process[J]. Chinese Journal of Applied Mechanics, 2010, 27(3):543-549. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201003021
    [63]
    曾昊, 何立明, 章雄伟, 等.入射喷口宽度对环形射流激波聚焦起爆爆震的影响分析[J].空气动力学学报, 2011, 29(4):501-507. doi: 10.3969/j.issn.0258-1825.2011.04.018

    Zeng H, He L M, Zhang X W, et al. Investigation on the influence of jet width on detonation initiation via imploding annular shock waves[J]. Acta Aerodynamica Sinica, 2011, 29(4):501-507. doi: 10.3969/j.issn.0258-1825.2011.04.018
    [64]
    曾昊, 何立明, 章雄伟, 等.环形射流喷口位置对激波聚焦起爆的影响分析[J].推进技术, 2011, 32(3):437-442. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103026

    Zeng H, He L M, Zhang X W, et al. Investigation on the influence of jets spout location on detonation initiation via imploding annular shock waves[J]. Journal of Propulsion Technology, 2011, 32(3):437-442. http://d.old.wanfangdata.com.cn/Periodical/tjjs201103026
    [65]
    何立明, 荣康, 曾昊, 等.射流宽度对激波会聚起爆的影响分析[J].空气动力学学报, 2012, 30(3):322-327. doi: 10.3969/j.issn.0258-1825.2012.03.008

    He L M, Rong K, Zeng H, et al. Investigation on the influence of jets width on initiation by shock wave focus[J]. Acta Aerodynamica Sinica, 2012, 30(3):322-327. doi: 10.3969/j.issn.0258-1825.2012.03.008
    [66]
    曾昊, 何立明, 苏建勇.凹面腔尺寸和曲率对激波会聚起爆的影响分析[J].空气动力学学报, 2013, 31(1):82-87. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201301014

    Zeng H, He L M, Su J Y. Investigation on the influence of cavity configuration on detonation initiation via shock wave focus[J]. Acta Aerodynamica Sinica, 2013, 31(1):82-87. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201301014
    [67]
    Heiser W H, Pratt D T. Thermodynamic cycle analysis of pulse detonation engines[J]. Journal of Propulsion and Power, 2002, 18(1):68-76. doi: 10.2514/2.5899
    [68]
    Wintenberger E, Shepherd J E. Thermodynamic analysis of combustion processes for propulsion systems[R]. AIAA-2004-1033, 2004.
    [69]
    Talley D G, Coy E B. Constant volume limit of pulsed propulsion for a constant gamma ideal gas[J]. Journal of Propulsion and Power, 2002, 18(2):400-406. doi: 10.2514/2.5948
    [70]
    Li C, Kailasanath K. Partial fuel filling in pulse detonation engines[J]. Journal of Propulsion and Power, 2003, 19(5):908-916. doi: 10.2514/2.6183
    [71]
    Cooper M, Shepherd J E, Schauer F. Impulse correlation for partially filled detonation tubes[J]. Journal of Propulsion and Power, 2004, 20(5):947-950. doi: 10.2514/1.4997
    [72]
    Sato S, Matsuo A, Endo T, et al. Numerical studies on specific impulse of partially filled pulse detonation rocket engines[J]. Journal of Propulsion and Power, 2006, 22(1):64-70. doi: 10.2514/1.9514
    [73]
    王可.高频脉冲爆震火箭发动机关键技术研究[D].西安: 西北工业大学, 2014.

    Wang K. Investigations on key technologies of a high-frequency pulse detonation rocket engine[D]. Xi'an: Northwestern Polytechnical University, 2014.
    [74]
    Cambier J L, Tegner J K. Strategies for pulsed detonation engine performance optimization[J]. Journal of Propulsion and Power, 1998, 14(4):489-498. doi: 10.2514/2.5305
    [75]
    Eidelman S, Yang X. Analysis of the pulse detonation engine efficiency[R]. AIAA-1998-3877, 1998.
    [76]
    Cambier J L, Adelman H G. Preliminary numerical simulations of a pulsed detonation wave engine[R]. AIAA-1988-2960, 1988.
    [77]
    Allgood D, Gutmark E, Hoke J, et al. Performance measurements of multicycle pulse detonation engine exhaust nozzles[J]. Journal of Propulsion and Power, 2006, 22(1):70-77. doi: 10.2514/1.11499
    [78]
    Cooper M, Shepherd J E. Single-cycle impulse from detonation tubes with nozzles[J]. Journal of Propulsion and Power, 2008, 24(1):81-87. doi: 10.2514/1.30192
    [79]
    Yan Y, Fan W, Wang K, et al. Experimental investigation of the effect of bell-shaped nozzles on the two-phase pulse detonation rocket engine performance[J]. Combustion Explosion and Shock Waves, 2011, 47(3):335-342. doi: 10.1134/S0010508211030117
    [80]
    Zhang Q, Fan W, Wang K, et al. Impact of nozzles on a valveless pulse detonation rocket engine without the purge process[J]. Applied Thermal Engineering, 2016, 100:1161-1168. doi: 10.1016/j.applthermaleng.2016.02.135
    [81]
    Barbour E A, Hanson R K. Analytic model for single-cycle de-tonation tube with diverging nozzles[J]. Journal of Propulsion and Power, 2009, 25(1):162-172. doi: 10.2514/1.35420
    [82]
    鲁唯, 范玮, 王可, 等.无阀式煤油脉冲爆震火箭发动机工作循环特性研究[J].推进技术, 2018, 5(39):971-978. http://d.old.wanfangdata.com.cn/Periodical/tjjs201805002

    Lu W, Fan W, Wang K, et al. Study on cycle processes of a valveless kerosene-fueled pulse detonation rocket engine[J]. Journal of Propulsion Technology, 2018, 5(39):971-978. http://d.old.wanfangdata.com.cn/Periodical/tjjs201805002
    [83]
    Brophy C M, Netzer D W. Effects of ignition characteristics and geometry on the performance of a JP-10/O2 fueled pulse detonation engine[R]. AIAA-1999-2635, 1999.
    [84]
    New T H, Panicker P K, Chui K F, et al. Experimental study on deflagration-to-detonation transition enhancement methods in a PDE[R]. AIAA-2006-7958, 2006.
    [85]
    Mercurio N, Pal S, Woodward R D, et al. Experimental studies of the unsteady ejector mode of a pulse detonation rocket-based combined cycle engine[R]. AIAA-2010-6882, 2010.
    [86]
    Panicker P K, Wilson D R, Lu F K. Operational issues affecting the practical implementation of pulsed detonation engines[R]. AIAA-2006-7958, 2006.
    [87]
    Wang K, Fan W, Lu W, et al. One method to increase the operating frequency of pulse detonation rocket engines[J]. Journal of Propulsion and Power, 2014, 30(2):518-522. doi: 10.2514/1.B34880
    [88]
    Bussing T. A rotary valved multiple pulse detonation engine (RVMPDE)[R]. AIAA-1995-2577, 1995.
    [89]
    Bussing T R A. Rotary valve multiple combustor pulse detonation engine: US 5513489[P]. 1996.
    [90]
    Bussing T R A, Bratkovich T E, Hinkey J B. Practical implementation of pulse detonations engines[R]. AIAA-1997-2748, 1997.
    [91]
    Hinkey J B, William J T, Henderson S E, et al. Rotary-valved, multiple-cycle, pulse detonation engine experimental demonstration[R]. AIAA-1997-2746, 1997.
    [92]
    Hinkey J B, Henderson S E, Bussing T R. Operation of a flight-scale rotary-valved, multiple-combustor, pulse detonation engine (RVMPDE)[R]. AIAA-1998-3881, 1998.
    [93]
    Bussing T, Lidstone G, Christofferson E. Pulse detonation propulsion proof of concept test article development[R]. AIAA-2002-3633, 2002.
    [94]
    Schweitzer J. Propulsion technology readiness for next generation transport systems[R]. AIAA-2003-2787, 2003.
    [95]
    Anderson S D, Tonouchi J H, Lidstone G L, et al. Performance trends for a product scale pulse detonation engine[R]. AIAA-2004-3402, 2004.
    [96]
    Matsuoka K, Esumi M, Kasahara J, et al. Study on valve systems for pulse detonation engines[R]. AIAA-2010-6672, 2010.
    [97]
    Matsuoka K, Esumi M, Ikeguchi K B, et al. Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve[J]. Combustion and Flame, 2012, 159(3):1321-1338. doi: 10.1016/j.combustflame.2011.10.001
    [98]
    Morozumi T, Matsuoka K, Sakamoto R, et al. Study on a four-cylinder pulse detonation rocket engine with a coaxial high frequency rotary valve[R]. AIAA-2013-0279, 2013.
    [99]
    Takagi S, Morozumi T, Matsuoka K, et al. Study on pulse detonation rocket engine using flight test demonstrator "Todoroki Ⅱ"[R]. AIAA-2014-4033, 2014.
    [100]
    Wang K, Fan W, Yan Y, et al. Operation of a rotary-valved pulse detonation rocket engine utilizing liquid kerosene and oxygen[J]. Chinese Journal of Aeronautics, 2011, 24(6):726-733. doi: 10.1016/S1000-9361(11)60085-X
    [101]
    Wang K, Fan W, Zhu X D, et al. Experimental studies on rotary valves for single-tube pulse detonation rocket engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(2):262-270. doi: 10.1177/0954410012470606
    [102]
    Lu W, Wang K, Zhang Q B, et al. Operation of a pulse detonation engine system at high frequency[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 230(5):886-894.
    [103]
    鲁唯, 范玮, 王可, 等.一种高频脉冲爆震火箭发动机排气及推力研究[J].工程热物理学报, 2017, 38(2):428-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017030900046706

    Lu W, Fan W, Wang K, et al. The exhuast and thrust properties of a high frequency pulse detonation rocket engine[J]. Journal of Engineering Thermophysics, 2017, 38(2):428-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017030900046706
    [104]
    Valaev A A, Zhimerin D G, Mironov E A, et al. Method and apparatus for intermittent combustion: US 3954380[P]. 1976.
    [105]
    DeRoche M. Repetitive Detonation Generator: US 5800153[P]. 1998.
    [106]
    Baklanov D I, Gvozdeva L G, Scherbak N B. Pulsed detonation combustion chamber for PDE[C]//High-Speed Deflagration and Detonation: Fundamentals and Control. Moscow, 2001.
    [107]
    Shimo M, Heister S D. Multicyclic-detonation-initiation studies in valveless pulsed detonation combustors[J]. Journal of Propulsion and Power, 2008, 24(2):336-344. doi: 10.2514/1.29546
    [108]
    Kitano S, Kimura Y, Sato H, et al. Micro-size pulse detonation engine performance[R]. AIAA-2007-581, 2007.
    [109]
    Endo T. Thermal spray by pulsed detonations[C]//Proc of International Workshop on Detonation for Propulsion. 2013.
    [110]
    Matsuoka K, Mukai T, Endo T. Development of a high frequency pulse detonation combustor by a liquid purge method[C]//Proc of International Workshop on Detonation for Propulsion. 2013.
    [111]
    Matsuoka K, Mukai T, Endo T. Development of a liquid-purge method for high-frequency operation of pulse detonation combustor[J]. Combustion Science and Technology, 2015, 187(5):747-764. doi: 10.1080/00102202.2014.965300
    [112]
    Watanabe H, Matsuo A, Muto K, et al. One-dimensional numerical investigation on purging the burned gas by the evaporation of water droplets in pulse detonation combustor[R]. AIAA-2016-1401, 2016.
    [113]
    Matsuoka K. High-frequency operation of a valveless pulse detonation combustor[C]//Proc of International Workshop on Detonation for Propulsion. 2015.
    [114]
    Muto K, Matsuoka K, Kasahara J, et al. Development of high-frequency pulse detonation combustor without purging material[R]. AIAA-2016-0123.
    [115]
    Matsuoka K, Muto K, Kasahara J, et al. Investigation of fluid motion in valveless pulse detonation combustor with high-frequency operation[J]. Proceedings of the Combustion Institute, 2017, 36(2):2641-2647. http://cn.bing.com/academic/profile?id=312369d3435bdd11b3ede231e43f7273&encoded=0&v=paper_preview&mkt=zh-cn
    [116]
    Wang K, Fan W, Lu W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71(1):605-614. http://cn.bing.com/academic/profile?id=397297018331e497be6e27fc9c390ce9&encoded=0&v=paper_preview&mkt=zh-cn
    [117]
    Lu W, Fan W, Wang K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2017, 36(2):2657-2664. http://cn.bing.com/academic/profile?id=47cbf4afaa7adcb6e6cdfc4f5837ff3a&encoded=0&v=paper_preview&mkt=zh-cn
    [118]
    Kailasanath K. Research on pulse detonation combustion systems-a status report[R]. AIAA-2009-631, 2009.
    [119]
    Kasahara J, Hirano M, Matsuo A. Flight experiments regarding ethylene-oxygen single-tube pulse detonation rockets[R]. AIAA-2004-3918, 2004.
    [120]
    Kasahara J, Hasegawa A, Nemoto T. Thrust demonstration of a pulse detonation rocket "Todoroki"[R]. AIAA-2007-5007, 2007.
    [121]
    Kasahara J, Hasegawa A, Nemoto T, et al. Performance validation of a single-tube pulse detonation rocket system[J]. Journal of Propulsion and Power, 2009, 25(1):173-180. doi: 10.2514/1.37924
    [122]
    Matsuoka K, Morozumi T, Takagi S, et al. Flight validation of a rotary-valved four-cylinder pulse detonation rocket[J]. Journal of Propulsion and Power, 2016, 32(2):383-391. doi: 10.2514/1.B35739
    [123]
    Kasahara J, Matsuoka K, Matsuo A, et al. Experimental study on a four-cylinder pulse detonation rocket engine flight test model[C]//Proc of International Workshop on Detonation for Propulsion. 2013.
    [124]
    Qiu H. Experimental investigation of an air-breathing pulse detonation turbine prototype engine[C]//Proc of International Workshop on Detonation for Propulsion. 2016.
    [125]
    Fan W. Research progress on pulse detonation rocket engines[C]//Proc of International Workshop on Detonation for Propulsion. 2011.
    [126]
    Fan W. Efforts to increase the operating frequency of two-phase pulse detonation rocket engines[C]//Proc of International Workshop on Detonation for Propulsion. 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (389) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return