Li Qing'an, Wang Ke, Sun Tianyu, et al. Numerical study on propagation characteristics of back-pressure in a pulse detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 103-110. doi: 10.11729/syltlx20180093
Citation: Li Qing'an, Wang Ke, Sun Tianyu, et al. Numerical study on propagation characteristics of back-pressure in a pulse detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 103-110. doi: 10.11729/syltlx20180093

Numerical study on propagation characteristics of back-pressure in a pulse detonation engine

doi: 10.11729/syltlx20180093
  • Received Date: 2018-06-11
  • Rev Recd Date: 2018-09-18
  • Publish Date: 2019-02-25
  • An engine flow path of a base geometry consists of the elaborately designed isolator and a detonation combustor with a length to diameter ratio of 20, along with a comparison group of four different geometries, were studied numerically by means of single detonation to investigate the propagation characteristics of back-pressure in an air-breathing pulse detonation engine. Parameters of the back-pressure, including propagation speed, pressure peak, and its decay rate as well as the total pressure recovery coefficient of the base model were considered and discussed. The results demonstrate that the designed isolator is able to reduce the back-propagation speed and the back-pressure peak effectively. The detonation combustor with a larger length to diameter ratio contains more fuel and oxidant, which needs more efforts to prevent the back-pressure. The decay rate of the pressure peak is mainly affected by the geometry of the isolator at the early stage of the back-propagation process, and afterwards it depends on the distance of the back-propagation. When the inlet pressure is given, the detonation combustor with a smaller length to diameter ratio has a more rapid exhaust process, and therefore, a slighter back-pressure propagation phenomenon. Large total pressure losses are not found in the designed isolator when the Mach number of the incoming flow is between 0.15~0.80 under sea level conditions.
  • loading
  • [1]
    Zangiev A E, Ivanov V S, Frolov S M. Thrust characteristics of an airbreathing pulse detonation engine in flight at Mach numbers of 0.4 to 5.0[J]. Russian Journal of Physical Chemistry B, 2016, 10(2):272-283. doi: 10.1134/S1990793116020135
    [2]
    Xiong C, Yan C J, Qiu H. Analysis of an air-breathing pulsed detonation engine with bypass and ejector[J]. International Journal of Turbo and Jet Engines, 2008, 25(2):129-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/TJJ.2008.25.2.129
    [3]
    European commission. Aeronautics and air transport research-7th framework programme 2007-2013. Project synopses-volume 1-calls 2007& 2008[R]. doi: 10.2777/83373.
    [4]
    Wang K, Fan W, Zhu X D, et al. Experimental studies on rotary valves for single-tube pulse detonation rocket engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 228(2):262-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2616af2250df0bad68fa1201f01891fe
    [5]
    彭畅新.脉冲爆震外涵加力燃烧室关键技术研究[D].西安: 西北工业大学, 2013.

    Peng C X. Investigation on key technologies of pulse detonation combustor as bypass burner[D]. Xi'an: Northwestern Polytechnical University, 2013.
    [6]
    范玮, 陈文娟, 严传俊.一种吸气式脉冲爆震发动机防反流机构: 中国, CN201020109153.7[P]. 2010-10-27.

    Fan W, Cheng W J, Yan C J. Device for back-flow prevention of air-breathing pulse detonation engine: China, CN201020109153.7[P]. 2010-10-27.
    [7]
    Matsuoka K, Morozumi T, Takagi S, et al. Flight validation of a rotary-valved four-cylinder pulse detonation rocket[J]. Journal of Propulsion and Power, 2015:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbc5033bb30fdd8d9ee2b389f6e86115
    [8]
    温玉芬.吸气式脉冲爆震发动机进气道的流动特性研究[D].南京: 南京航空航天大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041309.htm

    Wen Y F. Research on the flow characteristics of the inlet for air-breathing pulse detonation engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041309.htm
    [9]
    何小民, 王家骅.气动阀式两相脉冲爆震发动机研究[J].航空学报, 2004, 25(6):529-533. doi: 10.3321/j.issn:1000-6893.2004.06.001

    He X M, Wang J H. Investigation on the aerovalve two phase pulse detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6):529-533. doi: 10.3321/j.issn:1000-6893.2004.06.001
    [10]
    李建中, 王家骅, 范育新, 等.煤油气动阀式脉冲爆震发动机爆震波压力特性试验[J].推进技术, 2005, 26(5):443-447. doi: 10.3321/j.issn:1001-4055.2005.05.015

    Li J Z, Wang J H, Fan Y X, et al. Detonation pressure properties of kerosene aero-valve pulse detonation engine[J]. Journal of Propulsion Technology, 2005, 26(5):443-447. doi: 10.3321/j.issn:1001-4055.2005.05.015
    [11]
    郑殿峰, 杨义勇, 王家骅.吸气式脉冲爆震发动机钝体气动阀的设计与实验研究[J].北京大学学报:自然科学版, 2012, 48(3):347-353. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201203002

    Zheng D F, Yang Y Y, Wang J H. Design and experimental investigation of blunt aero-valve for air-breathing pulse detonation engine[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(3):347-353. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201203002
    [12]
    Wang K, Fan W, Lu W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71:605-614. doi: 10.1016/j.energy.2014.05.002
    [13]
    Lu W, Fan W, Wang K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2016, 36(2):2657-2664. http://cn.bing.com/academic/profile?id=47cbf4afaa7adcb6e6cdfc4f5837ff3a&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Brophy C M, Sinibaldi J O, Ma L, et al. Effects of non-uniform mixture distributions on pulse detonation engine performance[R]. AIAA-2005-1304, 2005.
    [15]
    Qiu H, Xiong C, Yan C J, et al. Effect of aerodynamic valve on backflow in pulsed detonation tube[J]. Aerospace Science and Technology, 2013, 25(1):1-15. doi: 10.1016/j.ast.2011.12.003
    [16]
    卢杰.脉冲爆震涡轮发动机关键技术研究[D].西安: 西北工业大学, 2016.

    Lu J. Investigation on key technologies of pulse detonation turbine engine[D]. Xi'an: Northwestern Polytechnical University, 2016.
    [17]
    Sha S, Chen Z, Jiang X. Influences of obstacle geometries on shock wave attenuation[J]. Shock Waves, 2014, 24(6):573-582. doi: 10.1007/s00193-014-0520-9
    [18]
    Wang Z W, Wang Y Q, Peng C X, et al. Experimental study of pressure back-propagation in a valveless air-breathing pulse detonation engine[J]. Applied Thermal Engineering, 2017, 110:62-69. doi: 10.1016/j.applthermaleng.2016.08.144
    [19]
    Lu F K, Umapathy N K, Thirumangalath S C. Multi-port filling of pulsed detonation engines[R]. AIAA-2017-2119, 2017.
    [20]
    李舒欣, 范玮, 王永佳, 等.流体障碍物对爆震管中初始火焰加速作用的数值研究[J].推进技术, 2017, 38(8):1893-1899. http://d.old.wanfangdata.com.cn/Periodical/tjjs201708028

    Li S X, Fan W, Wang Y J, et al. Numerical simulation of effects of fluidic obstacles on initial flame speed acceleration in a detonation tube[J]. Journal of Propulsion Technology, 2017, 38(8):1893-1899. http://d.old.wanfangdata.com.cn/Periodical/tjjs201708028
    [21]
    Wang Y J, Fan W, Li H B, et al. Numerical simulations of flame propagation and DDT in obstructed detonation tubes filled with fluidic obstacles[R]. AIAA-2017-2382, 2017.
    [22]
    Zhang Q B, Fan W, Wang K, et al. Numerical investigation on the performance of the pulse detonation engine with injected flows[R]. AIAA-2017-2242, 2017.
    [23]
    Peace J T, Lu Frank K. Numerical study of pulse detonation engine nozzle and exhaust flow phenomena[R]. AIAA-2015-4189, 2015.
    [24]
    Aungier R H. A fast, accurate real gas equation of state for fluid dynamic analysis applications[J]. Journal of Fluids Engineering, 1995, 117(2):277-281. doi: 10.1115/1.2817141
    [25]
    Kaneshige M, Shepherd J E. Detonation database[R]. Explosion Dynamics Laboratory Report FM97-8, 1997.
    [26]
    王丁喜.脉冲爆震发动机进气道内流场和爆震燃烧的数值研究[D].西安: 西北工业大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10699-2005064149.htm

    Wang D X. Numerical investigation on internal flow of inlet and detonation of pulse detonation engine[D]. Xi'an: Northwestern Polytechnical University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10699-2005064149.htm
    [27]
    Berger S, Sadot O, Ben-Dor G. Experimental investigation on the shock-wave load attenuation by geometrical means[J]. Shock Waves, 2010, 20(1):29-40. doi: 10.1007/s00193-009-0237-3
    [28]
    Gamezo V N, Oran E S. Unidirectional propagation of gas detonations in channels with sawtooth walls[R]. NRL/MR/6404-10-9255, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (264) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return