Wang Gaofeng, Xia Yifan, Ye Chenran, et al. Progress on light-round ignition dynamics in annular combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 14-28. doi: 10.11729/syltlx20180090
Citation: Wang Gaofeng, Xia Yifan, Ye Chenran, et al. Progress on light-round ignition dynamics in annular combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 14-28. doi: 10.11729/syltlx20180090

Progress on light-round ignition dynamics in annular combustor

doi: 10.11729/syltlx20180090
  • Received Date: 2018-06-05
  • Rev Recd Date: 2018-09-26
  • Publish Date: 2019-02-25
  • Annular combustors are generally applied in aero-engines. Study on light-round ignition dynamics of annular combustors is important for ignition reliability. Laboratory-scale mo-dels have become a feasible way to investigate the ignition mechanism of annular combustors due to its low economic cost and high precision. Several typical laboratory-scale annular combustors and related experiments are reviewed, including the annular combustor MICCA from EM2C in France, the premixed or non-premixed annular combustor made by Cambridge University, the annular combustor model referred from an industrial gas turbine in Technical University Munich, and the annular combustor TurboCombo with the coupling of the combustor and the turbine interaction made by Zhejiang University. The ignition process can be generally divided into three phases:(1) the formation of a flame kernel in a flammable mixture around the igniter; (2) the kernel expands and grows to be a swirling flame, which is stabilized and anchored upon the adjacent burner; (3) the propagation of the flame (light-round), which successively igniting all the burners and then reaching to steady state. The factors influencing the light-round process are quite complicated. Previous experimental and numerical investigations focus on the equivalence ratio, ignition mode, thermal power, bulk velocity, spacing between burners and so on, which influence the characteristics of the ignition, flameout, flame propagation mode and light-round time in the annular combustor. Recently, the spray combustion is also studied in the similar models. Meanwhile, the application of advanced laser diagnostics with high resolution would promote the understanding of the light-round mechanism.
  • loading
  • [1]
    Weigand P, Meier W, Duan X R, et al. Investigations of swirl flames in a gas turbine model combustor[J]. Combustion and Flame, 2006, 144(1-2):205-224. doi: 10.1016/j.combustflame.2005.07.010
    [2]
    Palies P, Durox D, Schuller T, et al. Dynamics of premixed confined swirling flames[J]. Comptes Rendus Mécanique, 2009, 337(6-7):395-405. doi: 10.1016/j.crme.2009.06.001
    [3]
    Boxx I, Arndt C M, Carter C D, et al. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor[J]. Experiments in Fluids, 2010, 52(3):555-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1936ba0f4eea8e498f2dcd45e6ee685b
    [4]
    Meier W, Boxx I, Stöhr M, et al. Laser-based investigations in gas turbine model combustors[J]. Experiments in Fluids, 2010, 49(4):865-882. doi: 10.1007/s00348-010-0889-x
    [5]
    Palies P, Durox D, Schuller T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717. doi: 10.1016/j.combustflame.2010.02.011
    [6]
    Palies P, Durox D, Schuller T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991. doi: 10.1016/j.combustflame.2011.02.012
    [7]
    Boxx I, Carter C D, Stöhr M, et al. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics[J]. Experiments in Fluids, 2013, 54(5):1532. doi: 10.1007/s00348-013-1532-4
    [8]
    Lacoste D A, Moeck J P, Durox D, et al. Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10):101501. doi: 10.1115/1.4024961
    [9]
    Kobayashi M, Ogata H, Oda T, et al. Improvement on ignition performance for a lean staged low NOx combustor[R]. ASME GT2011-46187, 2011. https://www.researchgate.net/publication/267502943_Improvement_on_Ignition_Performance_for_a_Lean_Staged_Low_NOx_Combustor
    [10]
    Cordier M, Vandel A, Renou B, et al. Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner[R]. ASME GT2013-94681, 2013.
    [11]
    Barré D, Esclapez L, Cordier M, et al. Flame propagation in aeronautical swirled multi-burners:experimental and numerical investigation[J]. Combustion and Flame, 2014, 161(9):2387-2405. doi: 10.1016/j.combustflame.2014.02.006
    [12]
    Machover E, Mastorakos E. Experimental and numerical investigation on spark ignition of linearly arranged non-premixed swirling burners[J]. Combustion Science and Technology, 2017, 189(8):1326-1353. doi: 10.1080/00102202.2017.1294589
    [13]
    Bourgouin J F, Durox D, Schuller T, et al. Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160(8):1398-1413. doi: 10.1016/j.combustflame.2013.02.014
    [14]
    Philip M, Boileau M, Vicquelin R, et al. Ignition sequence of an annular multi-injector combustor[J]. Physics of Fluids, 2014, 26(9):091106. doi: 10.1063/1.4893452
    [15]
    Philip M, Boileau M, Vicquelin R, et al. Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2014, 137(3):031501. doi: 10.1115/1.4028265
    [16]
    Philip M, Boileau M, Vicquelin R, et al. Large eddy simulations of the ignition sequence of an annular multiple-injector combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3):3159-3166. doi: 10.1016/j.proci.2014.07.008
    [17]
    Prieur K, Durox D, Beaunier J, et al. Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection[J]. Proceedings of the Combustion Institute, 2017, 36(3):3717-3724. doi: 10.1016/j.proci.2016.08.008
    [18]
    Bach E, Kariuki J, Dawson J R, et al. Spark ignition of single bluff-body premixed flames and annular combustors[R]. AIAA-2013-1182, 2013. https://www.researchgate.net/publication/268469348_Spark_ignition_of_single_bluff-body_premixed_flames_and_annular_combustors
    [19]
    Machover E, Mastorakos E. Spark ignition of annular non-premixed combustors[J]. Experimental Thermal and Fluid Science, 2016, 73:64-70. doi: 10.1016/j.expthermflusci.2015.09.008
    [20]
    Machover E, Mastorakos E. Experimental investigation on spark ignition of annular premixed combustors[J]. Combustion and Flame, 2017, 178:148-157. doi: 10.1016/j.combustflame.2017.01.013
    [21]
    Pankiewitz C, Sattelmayer T. Time domain simulation of combustion instabilities in annular combustors[R]. ASME GT2002-30063, 2002. https://www.researchgate.net/publication/245353100_Time_Domain_Simulation_of_Combustion_Instabilities_in_Annular_Combustors
    [22]
    Kunze K, Hirsch C, Sattelmayer T. Transfer function mea-surements on a swirl stabilized premix burner in an annular combustion chamber[R]. ASME GT2004-53106, 2004.
    [23]
    Fanaca D, Alemela P R, Ettner F, et al. Determination and comparison of the dynamic characteristics of a perfectly premixed flame in both single and annular combustion chambers[R]. ASME GT2008-50781, 2008.
    [24]
    Ye C R, Wang G F, Fang Y Q, et al. Ignition dynamics in an annular combustor with gyratory flow motion[R]. ASME GT2018-76624, 2018.
    [25]
    Zhao D M, Lin Q Z, Xia Y F, et al. Simulations of the ignition dynamics in an annular multiple-injector combustor[C]//Proceedings of the CSSCI Spring technical meeting. 2018.
    [26]
    令狐昌鸿, 王高峰, 钟亮, 等.环形旋流燃烧室模型点火过程的实验[J].航空动力学报, 2018, 33(7):1767-1778. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201807026

    Linghu C H, Wang G F, Zhong L, et al. Experiment on ignition process in annular swirling combustor model[J]. Journal of Aerospace Power, 2018, 33(7):1767-1778. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201807026
    [27]
    叶沉然, 王高峰, 方元祺, 等.涡轮导叶对环形燃烧室点火影响的实验研究[C]//2018年中国工程热物理学会燃烧学学术年会论文集. 2018.

    Ye C R, Wang G F, Fang Y Q, et al. Experimental investigations of ignition dynamics in an annular combustor with turbine guide vanes[C]//Proc of China National Symposium on Combustion. 2018.
    [28]
    叶沉然, 王高峰, 马承飚, 等.斜喷环流环形燃烧室点火实验研究[J].工程热物理学报, 2018, 39(11):2549-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811032.htm

    Ye C R, Wang G F, Ma C B, et al. Experimental investigations of ignition process in an annular combustor with circumferential flow via oblique injection[J]. Journal of Engineering Thermophysics, 2018, 39(11):2549-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811032.htm
    [29]
    Triantafyllidis A, Mastorakos E, Eggels R L G M. Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure[J]. Combustion and Flame, 2009, 156(12):2328-2345. doi: 10.1016/j.combustflame.2009.05.005
    [30]
    Subramanian V, Domingo P, Vervisch L. Large eddy simulation of forced ignition of an annular bluff-body burner[J]. Combustion and Flame, 2010, 157(3):579-601. doi: 10.1016/j.combustflame.2009.09.014
    [31]
    Jones W P, Prasad V N. LES-pdf simulation of a spark ignited turbulent methane jet[J]. Proceedings of the Combustion Institute, 2011, 33(1):1355-1363. doi: 10.1016/j.proci.2010.06.076
    [32]
    Gicquel L Y M, Staffelbach G, Poinsot T. Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6):782-817. doi: 10.1016/j.pecs.2012.04.004
    [33]
    Jones W P, Marquis A J, Prasad V N. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159(10):3079-3095. doi: 10.1016/j.combustflame.2012.04.008
    [34]
    Bulat G, Jones W P, Marquis A J. Large eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method[J]. Proceedings of the Combustion Institute, 2013, 34(2):3155-3164. doi: 10.1016/j.proci.2012.07.031
    [35]
    Boileau M, Staffelbach G, Cuenot B, et al. LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154(1-2):2-22. doi: 10.1016/j.combustflame.2008.02.006
    [36]
    Esclapez L, Riber E, Cuenot B. Ignition probability of a partially premixed burner using LES[J]. Proceedings of the Combustion Institute, 2015, 35(3):3133-3141. http://cn.bing.com/academic/profile?id=2fc7361011e41b65d1a7ef2de846ea39&encoded=0&v=paper_preview&mkt=zh-cn
    [37]
    Neophytou A, Richardson E S, Mastorakos E. Spark ignition of turbulent recirculating non-premixed gas and spray flames:a model for predicting ignition probability[J]. Combustion and Flame, 2012, 159(4):1503-1522. doi: 10.1016/j.combustflame.2011.12.015
    [38]
    Fiorina B, Vicquelin R, Auzillon P, et al. A filtered tabulated chemistry model for LES of premixed combustion[J]. Combustion and Flame, 2010, 157(3):465-475. doi: 10.1016/j.combustflame.2009.09.015
    [39]
    Auzillon P, Gicquel O, Darabiha N, et al. A filtered tabulated chemistry model for LES of stratified flames[J]. Combustion and Flame, 2012, 159(8):2704-2717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed6fd843a298cf43e57926e1ca87391d
    [40]
    Colin O, Ducros F, Veynante D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12(7):1843-1863. doi: 10.1063/1.870436
    [41]
    Worth N A, Dawson J R. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber[J]. Combustion and Flame, 2013, 160(11):2476-2489 doi: 10.1016/j.combustflame.2013.04.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(35)  / Tables(1)

    Article Metrics

    Article views (332) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return