Gong Jishuang, Zhou Lin, Zhang Yining, et al. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. doi: 10.11729/syltlx20180072
Citation: Gong Jishuang, Zhou Lin, Zhang Yining, et al. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. doi: 10.11729/syltlx20180072

Investigation on flow field structure of rotating detonation using the method of characteristics

doi: 10.11729/syltlx20180072
  • Received Date: 2018-05-18
  • Rev Recd Date: 2018-09-29
  • Publish Date: 2019-02-25
  • The characteristics theory and the corresponding calculation methods are classical methods of gas dynamics, which have high computational efficiency in the rotating detonation flow field analysis. The analysis of the rotating detonation flow field is simplified in the wave-fixed reference frame, and the steady-state flow field calculation method is established by using the method of characteristics and the unit processes. The effect of the equivalence ratio and the plenum stagnation conditions on the rotating detonation flow field structure of premixed hydrogen/air, methane/air and octane/air is studied. The calculated results show that the detonation wave height and inclination angle are significantly affected by the equivalence ratio and the stagnation temperature, and decrease as the fuel changing from the small molecule hydrogen to the macromolecular hydrocarbon. The equivalence ratio and the stagnation temperature mainly affect the macroscopic flow field structure by affecting the propagation velocity, height and inclination angle of the detonation wave.
  • loading
  • [1]
    Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [2]
    Lu F K, Braun E M. Rotating detonation wave propulsion:experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5):1125-1142. doi: 10.2514/1.B34802
    [3]
    Dabora E K, Nicholls J A, Morrison R B. The influence of a compressible boundary on the propagation of gaseous detonations[J]. Symposium (International) on Combustion, 1965, 10(1):817-830. doi: 10.1016/S0082-0784(65)80225-9
    [4]
    Sommers W P, Morrison R B. Simulation of condensed-explosive detonation phenomena with gases[J]. Physics of Fluids, 1962, 5:241-248. doi: 10.1063/1.1706602
    [5]
    Sichel M, Foster J C. The ground impulse generated by a plane fuel-air explosion with side relief[J]. Acta Astronautica, 1979, 6(3-4):243-256. doi: 10.1016/0094-5765(79)90096-1
    [6]
    林伟, 周进, 林志勇, 等.热射流起爆过程的数值模拟[J].国防科技大学学报, 2015, 37(1):70-77, 89. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012

    Lin W, Zhou J, Lin Z Y, et al. Numerical simulation of detonation onset by hot jets[J]. Journal of National University of Defense Technology, 2015, 37(1):70-77, 89. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012
    [7]
    姜孝海, 范宝春, 董刚, 等.旋转爆轰流场的数值模拟[J].推进技术, 2007, 28(4):403-407. doi: 10.3321/j.issn:1001-4055.2007.04.014

    Jiang X H, Fan B C, Dong G, et al. Numerical investigation on the flow field of rotating detonation wave[J]. Journal of Propulsion Technology, 2007, 28(4):403-407. doi: 10.3321/j.issn:1001-4055.2007.04.014
    [8]
    Schwer D, Kailasanath K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J]. Proceedings of the Combustion Institute, 2013, 34(2):1991-1998. http://cn.bing.com/academic/profile?id=0d31c33ea917c211de2c68354bda5dfa&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Tsuboi N, Eto S, Hayashi A K, et al. Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine[J]. Journal of Propulsion and Power, 2016, 33(1):100-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41e97ed96a0bbbd245f1918971d0a03e
    [10]
    Tsuboi N, Watanabe Y, Kojima T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture[J]. Proceedings of the Combustion Institute, 2015, 35(2):2005-2013. doi: 10.1016/j.proci.2014.09.010
    [11]
    Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1):1-10. doi: 10.1007/s00193-008-0178-2
    [12]
    Zhou R, Wang J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12):3632-3645. doi: 10.1016/j.combustflame.2012.07.007
    [13]
    Mizener A R, Lu F K. Low-order parametric analysis of a rotating detonation engine in rocket mode[J]. Journal of Propulsion and Power, 2017, 33(6):1543-1554. doi: 10.2514/1.B36432
    [14]
    Kaemming T, Fotia M L, Hoke J, et al. Thermodynamic mo-deling of a rotating detonation engine through a reduced-order approach[J]. Journal of Propulsion and Power, 2017, 33(5):1170-1178. doi: 10.2514/1.B36237
    [15]
    Sousa J, Braun J, Paniagua G. Development of a fast evaluation tool for rotating detonation combustors[J]. Applied Mathematical Modelling, 2017(52):42-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffa496b404616e8e1acd253ea5430c98
    [16]
    Fievisohn R T, Yu K H. Steady-state analysis of rotating detonation engine flowfields with the method of characteristics[J]. Journal of Propulsion and Power, 2017, 33(1):89-99. doi: 10.2514/1.B36103
    [17]
    Fievisohn R, Yu K. Method of characteristic analysis of gaseous detonations bounded by an inert gas[C]//Proc of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, 2015.
    [18]
    Zucrow M J, Hoffman J D. Gas dynamics. Volume 2-multidimensional flow[M]. New York:John Wiley and Sons, Inc., 1977:185-266.
    [19]
    Thompson P A. Compressible-fluid dynamic[M]. New York:McGraw-Hill, 1971:454-455.
    [20]
    Oneill J B, Powers S A. Determination of hypersonic flow fields by the method of characteristics[J]. AIAA Journal, 1963, 1(7):1693-1694. doi: 10.2514/3.1897
    [21]
    Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0[CP/OL].[2018-03-01] http://www.cantera.org.
    [22]
    Westbrook C K, Pitz W J, Herbinet O, et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and flame, 2009, 156(1):181-199. doi: 10.1016/j.combustflame.2008.07.014
    [23]
    Schwer D, Kailasanath K. Numerical study of the effects of engine size on rotating detonation engines[R]. AIAA-2011-581, 2011.
    [24]
    严传俊, 范玮.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社, 2005:37-38.

    Yan C J, Fan W. Principles and crucial techniques of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005:37-38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (271) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return