He Can, Xing Jianwen, Xiao Baoguo, et al. Investigation on flow field characteristics of a rectangular scramjet in different combustion modes[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 12-19. doi: 10.11729/syltlx20180022
Citation: He Can, Xing Jianwen, Xiao Baoguo, et al. Investigation on flow field characteristics of a rectangular scramjet in different combustion modes[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 12-19. doi: 10.11729/syltlx20180022

Investigation on flow field characteristics of a rectangular scramjet in different combustion modes

doi: 10.11729/syltlx20180022
  • Received Date: 2018-02-28
  • Rev Recd Date: 2018-09-12
  • Publish Date: 2018-08-25
  • In order to investigate the flow field characteristics of an ethylene fueled rectangular scramjet in different combustion modes, three-dimensional steady Reynolds averaged Navier-Stokes simulations of the flowpath were employed on the basis of direct-connect experiments for four different equivalence ratios. The numerical and experimental results were compared. The distinguishing criterion of the combustion modes for this configuration was chosen. The regularities of the sidewall pressure and one-dimensional average Mach number distributions were discussed. And the detailed characteristics of the shock structure, the flow separation, and the combustion were analyzed. The results indicate that the simulation results are in excellent agreement with the ground-test data. Multiple reflections of the oblique shock waves and expansion fans result in the wall pressure fluctuation, and the shock system is mainly affected by the flowpath structure for Case Cold. In the scramjet-mode operation, the influence of the shock produced by the interaction between the flow and the injectors on the flow field is obvious, the pressure rise is anchored downstream of the injector, and the flameholder cavity is full of three-dimensional separated structures. In the dual-scramjet-mode operation, the oblique shock train induced by shock-boundary-layer interactions dominates the flow field structure, and the shock system is weak in the combustor. And some separation occurs closely behind the shock train leading edge in the corners of the isolator whereas the separated region reduces in the cavity. In the ramjet-mode operation, the shock features are similar to that in the dual-scramjet-mode operation. The separation regions expand in the isolator corner and reduce in the cavity with the upstream propagation of the shock train. Some combustion may occur in the isolator with the upstream propagation of the shock train for the dual-scramjet-mode and ramjet-mode operations, while in the scramjet-mode operation the combustion is conducted just in the cavity and expander, and the chemical reaction and high temperature distributions are more concentrated.
  • loading
  • [1]
    Heiser W, Pratt D, Daley D, et al. Hypersonic airbreathing propulsion[M]. Washington, D C:AIAA Education Series, 1994, 26(4):5-12.
    [2]
    Goyne C P, McDaniel J C, Quagliaroli T M, et al. Dual-mode combustion of hydrogen in a Mach 5 contimuous-flow facility[J]. Journal of Propulsion and Power, 2001, 17(6):1313-1318. doi: 10.2514/2.5880
    [3]
    Noda J, Tomioka S, Sakuranaka N, et al. Evaluation of dual-mode combustor characteristics with vitiated and non-vitiated inflow[R]. AIAA-2013-3746, 2013.
    [4]
    Fotia M L. Mechanics of combustion mode transition in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2015, 31(1):1-10. doi: 10.2514/1.B35671
    [5]
    Bao W, Yang Q C, Chang J T, et al. Dynamic characteristics of combustion mode transitions in a strut-based scramjet combustor model[J]. Journal of Propulsion and Power, 2013, 29(5):1244-1248. doi: 10.2514/1.B34921
    [6]
    Kobayashi K, Tomioka S, Kato K, et al. Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3):518-526. doi: 10.2514/1.19294
    [7]
    Yentsch R J, Gaitonde D V. Numerical investigation of dual-mode operation in a rectangular scramjet flowpath[J]. Journal of Propulsion and Power, 2014, 30(2):474-489. doi: 10.2514/1.B34994
    [8]
    Yentsch R J, Gaitonde D V. Unsteady three-dimensional mode transition phenomena in a scramjet flowpath[J]. Journal of Propulsion and Power, 2015, 31(1):104-122. doi: 10.2514/1.B35205
    [9]
    Yentsch R J, Gaitonde D V. Comparison of mode-transition phenomena in axisymmetric and rectangular scramjet flowpaths[R]. AIAA-2014-0625, 2014.
    [10]
    Huang W, Ma L, Pourkashanian M, et al. Flow-field analysis of a typical hydrogen-fueled dual-mode scramjet combustor[J]. Journal of Aerospace Engineering, 2012, 25(3):336-346. doi: 10.1061/(ASCE)AS.1943-5525.0000136
    [11]
    Xiao B G, Xing J W, Tian Y, et al. Experimental and numerical investigations of combustion mode transition in a direct-connect scramjet combustor[J]. Aerospace Science and Technology, 2015, 46(12):331-338.
    [12]
    Tian Y, Xiao B G, Zhang S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Techno-logy, 2015, 46:451-458. doi: 10.1016/j.ast.2015.09.002
    [13]
    田野.空气节流对超燃燃烧室燃烧性能影响研究[D].绵阳: 中国空气动力研究与发展中心, 2013. http://cdmd.cnki.com.cn/Article/CDMD-90113-1014125819.htm

    Tian Y. Numerical study on air throttling influence on the performance of combustion in the scramjet combustor[D]. Mianyang: China Aerodynamics Research and Development Center, 2013. http://cdmd.cnki.com.cn/Article/CDMD-90113-1014125819.htm
    [14]
    赵慧勇.超燃冲压整体发动机并行数值研究[D].绵阳: 中国空气动力研究与发展中心, 2005.

    Zhao H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center, 2005.
    [15]
    何粲.双模态超燃冲压发动机隔离段流动特性研究[D].绵阳: 中国空气动力研究与发展中心, 2015. http://cdmd.cnki.com.cn/Article/CDMD-90113-1016066171.htm

    He C. Investigation of Flow Characteristics in the dual-mode scramjet isolator[D]. Mianyang: China Aerodynamics Research and Development Center, 2015. http://cdmd.cnki.com.cn/Article/CDMD-90113-1016066171.htm
    [16]
    蒋旭旭.激波诱导边界层分离的研究[D].哈尔滨: 哈尔滨工程大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10217-2007116543.htm

    Jiang X X. Research on the separation of boundary layer induced by shock waves[D]. Harbin: Harbin Engineering University, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10217-2007116543.htm
    [17]
    Nedungadi A, Wie D M. Understanding isolator performance operating in the separation-shock mode[R]. AIAA-2004-3832, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (270) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return