Yi Miaorong, Zhao Huiyong, Le Jialing. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 1-11. doi: 10.11729/syltlx20180019
Citation: Yi Miaorong, Zhao Huiyong, Le Jialing. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 1-11. doi: 10.11729/syltlx20180019

Hypersonic boundary layer transition simulation of complex configuration using γ-Reθ transition model

doi: 10.11729/syltlx20180019
  • Received Date: 2017-02-06
  • Rev Recd Date: 2018-04-25
  • Publish Date: 2018-08-25
  • The correlation-based γ-Reθ transition model has been implemented into a large scale parallel compressible Navier-Stokes solver AHL3D. In order to simulate the effects of compressibility of the hypersonic flow, compressible modification has been added into this model. The constant parameter for the separation induced transition has been enhanced to improve the ability of the forced transition simulation. The correlation equations have been adjusted after all the modifications. In order to validate the modified models' ability to capture the transition location, a Ma=7.4 Ames all-body aircraft model for natural transition and a Ma=6 flat plate installed with three dimensional roughness elements for forced transition were simulated. The results show that compared to the original model, the modified model gives much later transition location and stronger effects of the roughness elements, which agree well with the experimental results. Finally, the modified model has been applied to the simulation of hypersonic natural and forced transition of the 20% scale X-51A fore body configuration in BAM6QT. The present model can simulate not only the effects of the free stream turbulence intensity but also the promotion of the transition position by the forced transition trips. The results show the good potential of the modified γ-Reθ transition model in transition prediction for complex configurations in hypersonic flows.
  • loading
  • [1]
    Mayer C S J, Terzi D A V, Fasel H F. DNS of complete transition to turbulence via oblique breakdown at Mach3[R]. AIAA-2008-4398, 2008.
    [2]
    Ducros F, Comte P, Lesieur M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36. doi: 10.1017/S0022112096008221
    [3]
    Mack L M. Boundary layer linear stability theory[R]. AGARD Report No.709, 1984.
    [4]
    Kocian T S, Moyes T, Mullen C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry[R]. AIAA-2016-3346, 2016.
    [5]
    Scott S, Nowak R J, Horvath T J. Boundary layer control for hypersonic airbreathing vehicles[R]. AIAA-2004-2246, 2004.
    [6]
    Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables-part1: model formulation[R]. GT-2004-53452, 2004.
    [7]
    Langtry R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: University of Stuttgart, 2006.
    [8]
    Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362
    [9]
    Watanabe Y, Misaka M, Obayashi S, et al. Application of crossflow transition criteria to local correlation-based transition model[R]. AIAA-2009-1145, 2009.
    [10]
    Seyfert C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[R]. AIAA-2012-0448, 2012.
    [11]
    Grabe C, Krumbein K. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539. doi: 10.2514/1.C032063
    [12]
    Langel C M, Chow R, Dam P V. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition[R]. AIAA-2014-0234, 2014.
    [13]
    Krause M, Behr M, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA-2008-2598, 2008.
    [14]
    Zhang X D, Gao Z H. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. doi: 10.1016/S1000-9361(11)60030-7
    [15]
    Cheng G, Nichols R, Neroorkar K, et al. Validation and assessment of turbulence transition models[R]. AIAA-2009-1141, 2009.
    [16]
    Bensassi K, Lani A, Patrick. Rambaud P. Numerical investigations of local correlation-based transition model in hypersonic flows[R]. AIAA-2012-3151, 2012.
    [17]
    赵慧勇.超燃冲压整体发动机并行数值研究[D].绵阳: 中国空气动力研究与发展中心, 2005.

    Zhao H Y. Massively parallel computation on scramjet combustor[D]. Mianyang: China Aerodynamics Research and Development Center, 2005.
    [18]
    Le J L, Yang S H, Liu W X, et al. Massively parallel simulations of kerosene-fueled scramjet[R]. AIAA-2005-3318, 2005.
    [19]
    尚庆, 陈林, 李雪, 等.高超声速钝锥双楔绕流流动转捩与分离流动的壁温影响[J].航空学报, 2014, 35(11):2958-2969. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201411007.htm

    Shang Q, Chen L, Li X, et al. Wall temperature effect on transition flow and separated flow in hypersonic flow around a blunt double wedge[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2958-2969. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201411007.htm
    [20]
    Reshotko E. Is Reθ/Me a meaningful transition criterion?[J]. AIAA Journal, 2007, 45(7):1441-1443. doi: 10.2514/1.29952
    [21]
    赵慧勇, 周瑜, 倪鸿礼.高超声速进气道边界层转捩试验[J].实验流体力学, 2012, 26(1):1-6 doi: 10.3969/j.issn.1672-9897.2012.01.001

    Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6. doi: 10.3969/j.issn.1672-9897.2012.01.001
    [22]
    易淼荣, 赵慧勇, 乐嘉陵.强制转捩对高超声速进气道性能影响[J].航空动力学报, 2016, 31(8):1830-1837. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608005

    Yi M R, Zhao H Y, Le J L. Effect of forced-transition on performance of hypersonic inlet[J]. Journal of Aerospace Power, 2016, 31(8):1830-1837. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608005
    [23]
    Forsythe J R, Hoffmann K, Suzen Y. Investigation of modified Menter's two-equation turbulence models for supersonic applications[R]. AIAA-99-0873, 1999.
    [24]
    Lockman W K, Lawrence S L, Cleary J W. Flow over an all-body hypersonic aircraft-experiment and computation[J]. Journal of Spacecraft and Rockets, 1992, 29(1):7-15. doi: 10.2514/3.26308
    [25]
    Tirtey S C, Chazot O, Walpot L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418. doi: 10.1007/s00348-010-0939-4
    [26]
    Tirtey S C, Walpot L, Chazot O. Characterization of hypersonic roughness induced transition for the EXPERT flight experiment[R]. AIAA-2009-7215, 2009.
    [27]
    Wang L, Xiao L, Fu S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56:112-124. doi: 10.1016/j.ast.2016.07.004
    [28]
    Wang L, Fu S. Development of anintermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow Turbulence and Combust, 2011, 87(1):165-187. doi: 10.1007/s10494-011-9336-1
    [29]
    Orlik E, Fedioun I, Davidenko D. Boundary-layer transition on a hypersonic forebody:experiments and calculations[J]. Journal of Spacecraft and Rockets, 2011, 48(4):545-555. doi: 10.2514/1.51570
    [30]
    Borg M P. Entitled laminar instability and transition on the X-51A[D]. West Lafayette: Purdue University, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(3)

    Article Metrics

    Article views (250) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return