Song Wenyan, Wang Yanhua. Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 7-12. doi: 10.11729/syltlx20180014
Citation: Song Wenyan, Wang Yanhua. Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 7-12. doi: 10.11729/syltlx20180014

Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor

doi: 10.11729/syltlx20180014
  • Received Date: 2018-02-01
  • Rev Recd Date: 2018-05-21
  • Publish Date: 2018-10-25
  • Aiming to study the effects of vitiation species on combustion characteristics, comparative tests are conducted in a kerosene fueled supersonic combustor using an electrical heating facility and a methane combustion heating facility. For both clean and vitiated air, the total pressure and total temperature of the combustor entrance in every test are fixed at 820 kPa and 840K, and the Mach number is about 2.0. In comparative tests, combustion luminosities images are obtained using a high speed camera. Based on these images, the kerosene combustion flame-spreading angles are acquired. Experimental results indicate that, compared with the clean air, the combustor peak wall pressure decreases by 3.1%~6.9% with the methane combustion heated airflow, and the flame spreading angle decreases by 7.1%~12.4%.
  • loading
  • [1]
    Guy R W, Rogers R C, Puster R L, et al. The NASA Langley scramjet test complex[R]. AIAA-1996-3243, 1996.
    [2]
    Powell E S, Stallings D W. A review of test medium contamination effects on test article combustion processes[R]. AIAA-1998-0557, 1998.
    [3]
    Pellett G L, Bruno C, Chinitz W. Review of air vitiation effects on scramjet ignition and flameholding combustion processes[R]. AIAA-2002-3880, 2002.
    [4]
    Edelman R B, Spadaccini L J. Theoretical effects of vitiated air contamination on ground testing of hypersonic airbreathing engines[J]. Jouranl of Spacecraft and Rockets, 1969, 6(12):1442-1447. doi: 10.2514/3.29844
    [5]
    Tirres C, Bradley M, Morrison C, et al. A flow quality analysis for future hypersonic vehicle testing[R]. AIAA-2002-2706, 2002.
    [6]
    Engelund W C, Holland S D, Cockrell C E Jr, et al. Aerodynamic data base development for the Hyper-X air frame-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6):803-810. doi: 10.2514/2.3768
    [7]
    Garrand D. A plan for defining the effects of test medium on hypersonic propulsion systems-where do we start[C]//Proc of JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling & Simulation Subcommittee Joint Meeting. 2008.
    [8]
    Goyne C P, Cresci D. Hy-V program overview and status[R]. AIAA-2008-2577, 2008.
    [9]
    Goyne C P, McDaniel J C Jr, Krauss R H, et al. Test gas vitiation effects in a dual-mode scramjet combustion[J]. Journal of Propulsion and Power, 2007, 23(3):559-565. doi: 10.2514/1.24663
    [10]
    Haw W L, Goyne C P, Rockwell R D, et al. Experiment study of vitiation effects on scramjet mode transition[J]. Journal of Propulsion and Power, 2011, 27(2):506-508. doi: 10.2514/1.49090
    [11]
    Rockwell R D, Goyne C P, Haw W L, et al. Experimental study of test-medium vitiation effects on dual-mode scramjet performance[J]. Journal of Propulsion and Power, 2011, 27(5):1135-1142. doi: 10.2514/1.B34180
    [12]
    Rockwell R D, Goyne C P, Haw W L, et al. Measurement of water vapor levels for investigating vitiation effects on scramjet performance[J]. Journal of Propulsion and Power, 2011, 27(6):1315-1317. doi: 10.2514/1.B34270
    [13]
    Noda J, Tomioka S, Izumikwa M, et al. Estimation of enthalpy effects in direct connect dual-mode combustor[J]. Journal of Thermal Science and Technology, 2011, 6(2):289-296. doi: 10.1299/jtst.6.289
    [14]
    Noda J, Masuya G, Tomioka S, et al. Comparison of dual-mode combustor performance with various heating methods[R]. AIAA-2011-6087, 2011.
    [15]
    Mitani T, Hiraiwa T, Sato S, et al. Comparison of scramjet engine performance in Mach 6 vitiated and storage-heated air[J]. Journal of Propulsion and Power, 1997, 13(5):635-642. doi: 10.2514/2.5228
    [16]
    Hiraiwa T, Sato S, Tomioka S, et al. Testing of a scramjet engine model in Mach 6 vitiated air flow[R]. AIAA-1997-0292, 1997.
    [17]
    Ingenito A. Theoretical investigation of air vitiation effects on hydrogen fuelled scramjet performance[J]. International Journal of Hydrogen Energy, 2015, 40(6):2862-2870. doi: 10.1016/j.ijhydene.2014.12.014
    [18]
    邵菊香, 谈宁馨, 刘伟雄, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响(Ⅱ)-反应机理和动力学模拟[J].物理化学学报, 2010, 26(2):270-276. doi: 10.3866/PKU.WHXB20100140

    Shao J X, Tan N X, Liu W X, et al. Influence of H2O and CO2 in air on the combustion of ethylene(Ⅱ)-reaction mechanism and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2010, 26(2):270-276. doi: 10.3866/PKU.WHXB20100140
    [19]
    梁金虎, 王苏, 张灿, 等. H2O/CO2污染对RP-3航空煤油着火特性的影响[J].推进技术, 2015, 36(3):336-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201503003

    Liang J H, Wang S, Zhang C, et al. Effects of H2O and CO2 on ignition characteristics of RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2015, 36(3):336-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201503003
    [20]
    Würmel J, Silke E L, Curran H J, et al. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine[J]. Combustion and Flame, 2007, 151(1-2):289-302. doi: 10.1016/j.combustflame.2007.06.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (207) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return