Zhang Enlai, Li Zhufei, Li Yiming, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57. doi: 10.11729/syltlx20180002
Citation: Zhang Enlai, Li Zhufei, Li Yiming, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57. doi: 10.11729/syltlx20180002

Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge

doi: 10.11729/syltlx20180002
  • Received Date: 2018-01-05
  • Rev Recd Date: 2018-03-18
  • Publish Date: 2018-06-25
  • The cowl lip of a hypersonic inward-turning inlet is a critical region due to the complicated three dimensional shock interactions. To reveal these shock interactions and the inherent mechanisms, a simplified model of a plate with a V-shaped blunt leading edge was proposed to simulate the main characteristics of the cowl lip flow. Experimental observations in a shock tunnel in conjunction with numerical simulations were conducted to examine variations of the relative position of a wedge-induced forebody shock and the cowl lip. The results show that the stand-off distance of the bow shock in front of the stagnation point is large (compared with the bow shock of a cylinder with the same radius), followed by a wide subsonic flow region behind the bow shock. When the oblique shock impinges on the near normal part of the bow shock, Edney type Ⅳ a shock interaction occurs. On this occasion, the interaction between the incident shock and the bow shock is coupled with the shock interactions induced by the three dimensional flow over the V-shaped blunt leading edge, causing several regions of supersonic jet. When the oblique shock impinges on the subsonic region near the sonic point of the bow shock, a type of shock interaction that is different from the classification of Edney type Ⅲ is shown. When the oblique shock intersects with the bow shock at the supersonic region, the shock interaction structures are similar to the shock structures of Edney type Ⅱ and type Ⅵ. More attentions should be paid to the shock interaction problem of the V-shaped blunt leading edge cowl in the design of an inward-turning inlet.
  • loading
  • [1]
    吴子牛, 白晨媛, 李娟, 等.高超声速飞行器流动特征分析[J].航空学报, 2015, 36(1):58-85. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501007

    Wu Z N, Bai C Y, Li J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501007
    [2]
    杨基明, 李祝飞, 朱雨建, 等.激波的传播与干扰[J].力学进展, 2016, 46:541-587. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601013

    Yang J M, Li Z F, Zhu Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46:541-587. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601013
    [3]
    Edney B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock[R]. Aeronautical Research Institute of Sweden, FEA Rept 115, 1968.
    [4]
    Gaitonde D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99. doi: 10.1016/j.paerosci.2014.09.002
    [5]
    Chu Y B, Lu X Y. Characteristics of unsteady type Ⅳ shock/shock interaction[J]. Shock Waves, 2012, 22(3):225-235. doi: 10.1007/s00193-012-0366-y
    [6]
    王殿恺, 洪延姬, 李倩, 等.基于彩色纹影的Edney Ⅳ型激波相互作用研究[J].实验流体力学, 2013, 27(2):73-76. doi: 10.3969/j.issn.1672-9897.2013.02.014

    Wang D K, Hong Y J, Li Q, et al. Investigation of Edney Ⅳ shock interaction based on color Schlieren[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):73-76. doi: 10.3969/j.issn.1672-9897.2013.02.014
    [7]
    Xiao F S, Li Z F, Zhu Y J, et al. Hypersonic type-Ⅳ shock/shock interactions on a blunt body with forward-facing cavity[J]. Journal of Spacecraft and Rockets, 2017, 54(2):504-510. doi: 10.2514/1.A33556
    [8]
    Boldyrev S M, Borovoy V Y, Chinilov A Y, et al. A thorough experimental investigation of shock/shock interferences in high Mach number flows[J]. Aerospace science and technology, 2001, 5(3):167-178. doi: 10.1016/S1270-9638(01)01094-X
    [9]
    Van Wie D M. Scramjet inlets[J]. Scramjet propulsion, 2000, 189:447-511. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200505004
    [10]
    Wieting A R, Holden M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11):1557-1565. doi: 10.2514/3.10301
    [11]
    Barth J E, Wheatley V, Smart M K. Effects of hydrogen fuel injection in a Mach 12 scramjet inlet[J]. AIAA Journal, 2015, 53(10):2907-2919. doi: 10.2514/1.J053819
    [12]
    You Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[R]. AIAA-2011-2269, 2011. doi: 10.2514/6.2011-2269
    [13]
    Malo-Molina F J, Gaitonde D V, Ebrahimi H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3):572-582. doi: 10.2514/1.43646
    [14]
    Xiao F S, Li Z F, Zhang Z Y, et al. Hypersonic Shock Wave Interactions on a V-Shaped Blunt Leading Edge[J]. AIAA Journal, 2018, 56(1):356-367. doi: 10.2514/1.J055915
    [15]
    Segal C. The scramjet engine:processes and characteristics[M]. Cambridge University Press, 2009.
    [16]
    Mahapatra D, Jagadeesh G. Studies on unsteady shock interactions near a generic scramjet inlet[J]. AIAA Journal, 2009, 47(9):2223-2231. doi: 10.2514/1.41954
    [17]
    Jiao X L, Chang J T, Wang Z Q, et al. Mechanism study on local unstart of hypersonic inlet at high Mach number[J]. AIAA Journal, 2015, 53(10):3102-3112. doi: 10.2514/1.J053913
    [18]
    Li Z F, Gao W, Jiang H, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492. doi: 10.2514/1.J052384
    [19]
    李祝飞, 高文智, 李鹏, 等.一种进气道自起动特性检测方法[J].实验流体力学, 2013, 27(2):14-18. doi: 10.3969/j.issn.1672-9897.2013.02.003

    Li Z F, Gao W Z, Li P, et al. A test method for inlet self-starting ability detection[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):14-18. doi: 10.3969/j.issn.1672-9897.2013.02.003
    [20]
    凌岗, 李祝飞, 肖丰收, 等.低雷诺数下进气道异常起动现象及其影响因素探析[J].实验流体力学, 2014, 28(4):9-15. http://www.syltlx.com/CN/abstract/abstract10746.shtml

    Ling G, Li Z F, Xiao F S, et al. An exploration on the unusual self-starting behaviors of a hypersonic inlet under low Reynolds number condition[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4):9-15. http://www.syltlx.com/CN/abstract/abstract10746.shtml
    [21]
    Settles G S, Hargather M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology, 2017, 28(4):1-25. http://adsabs.harvard.edu/abs/2017MeScT..28d2001S
    [22]
    Billig F S. Shock-wave shapes around spherical-and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets, 1967, 4(6):822-823. doi: 10.2514/3.28969
    [23]
    Emanuel G, Hekiri H. Vorticity and its rate of change just downstream of a curved shock[J]. Shock Waves, 2007, 17(1-2):85-94. doi: 10.1007/s00193-007-0096-8
    [24]
    Grasso F, Purpura C, Chanetz B, et al. Type Ⅲ and type Ⅳ shock/shock interferences:theoretical and experimental aspects[J]. Aerospace Science and Technology, 2003, 7(2):93-106. doi: 10.1016/S1270-9638(02)00005-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (322) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return