Wang Xin, Li Shan, Tang Zhanqi, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
Citation: Wang Xin, Li Shan, Tang Zhanqi, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092

An experimental study on riblet-induced spanwise vortices in turbulent boundary layers

doi: 10.11729/syltlx20170092
  • Received Date: 2017-07-20
  • Rev Recd Date: 2017-08-30
  • Publish Date: 2018-02-25
  • Coherent structure is closely related to the high frictional resistance in wall turbulence.Summarizing the influence rule of vertical micro-grooves on spanwise vortex is helpful for understanding the drag reduction mechanism by riblet surface.15998 instantaneous velocity fields over both riblet (s+=2h+=16.3) and smooth surfaces in turbulent boundary layers (TBL) at a Reynolds number of Reτ=190 were acquired by using time-resolved particle image velocimetry (TRPIV) in a water tunnel.The swirling strength λci was used to reveal spanwise vortices, and we extracted the cores of spanwise vortices by finding swirling strength's local extremum in whole field.Subsequently, the proportion of the spanwise vortex, the average swirl strength, the average diameter of the vortex and the proportion of the each scale vortex were analyzed statistically in flow field over riblet surface.All experimental results were compared with those over a smooth surface.It is found that (1) the number of prograde spanwise vortices is decreased by riblet in near wall region, while retrograde spanwise vortices'number is increased.(2) The average strength of the spanwise vortex is decreased, whether prograde vortex or retrograde vortex.(3) The proportion of small scale prograde vortices and mesoscale retrograde vortices is increased in near wall region, while mesoscale prograde vortices and large scale retrograde vortices'proportion is decreased.(4) The difference in stream-normal scale of the prograde spanwise vortex becomes smaller in inner boundary, but the retrograde spanwise vortex's scale difference without change.(5) The proportion of small scale prograde vortices is decreased in log-law region, while the proportion of large scale prograde vortices is increased.Impact on the proportion of retrograde vortices is exactly opposite of the prograde vortex.
  • loading
  • [1]
    Kang Y D, Choi K S, Chun H H. Direct intervention of hairpin structures for turbulent boundary-layer control[J]. Physics of Fluids, 2008, 20(10):101517. doi: 10.1063/1.3006346
    [2]
    Kravchenko A G, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(12):3307-3309. doi: 10.1063/1.858692
    [3]
    许春晓.壁湍流相干结构和减阻控制机理[J].力学进展, 2015, 45(3):111-140. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxys201503038&dbname=CJFD&dbcode=CJFQ

    Xu C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45(3):111-140. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxys201503038&dbname=CJFD&dbcode=CJFQ
    [4]
    Walsh M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4):485-486. doi: 10.2514/3.60126
    [5]
    Walsh M J, Lindemann A M. Optimization and application of riblets for turbulent drag reduction[R]. AIAA-84-0347, 1984.
    [6]
    Viswanath P R. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences, 2002, 38(6):571-600. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.540.237
    [7]
    Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow:a review[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2010, 368(1929):4775-4806. doi: 10.1098/rsta.2010.0201
    [8]
    Bechert D W, Bartenwerfer M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206:105-129. doi: 10.1017/S0022112089002247
    [9]
    Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87. doi: 10.1017/S0022112096004673
    [10]
    封贝贝, 陈大融, 汪家道.亚音速飞行器壁面沟槽减阻研究与应用[J].清华大学学报(自然科学版), 2012, (7):967-972. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201505001.htm

    Feng B B, Chen D R, Wang J D. Riblet surface drag reduction on subsonic aircraft[J]. Journal of Tsinghua University (Science and Technology), 2012, (7):967-972. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201505001.htm
    [11]
    王晋军, 兰世隆, 陈光.沟槽面湍流边界层结构实验研究[J].力学学报, 2000, 32(5):621-626. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb200005013&dbname=CJFD&dbcode=CJFQ

    Wang J J, Lan S L, Chen G. Experimental study on the turbulent boundary layer flow over riblets surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2000, 32(5):621-626. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lxxb200005013&dbname=CJFD&dbcode=CJFQ
    [12]
    李山, 杨绍琼, 姜楠.沟槽面湍流边界层减阻的TRPIV测量[J].力学学报, 2013, 45(2):183-192. doi: 10.6052/0459-1879-12-262

    Li S, Yang S Q, Jiang N. TRPIV measurement of drag-reduction in the turbulent boundary layer over riblets plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):183-192. doi: 10.6052/0459-1879-12-262
    [13]
    Sharma A S, McKeon B J. On coherent structure in wall turbulence[J]. Journal of Fluid Mechanics, 2013, 728:196-238. doi: 10.1017/jfm.2013.286
    [14]
    Jodai Y, Elsinga G E. Experimental observation of hairpin auto-generation events in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2016, 795:611-633. doi: 10.1017/jfm.2016.153
    [15]
    Perry A E, Chong M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119:173-217. doi: 10.1017/S0022112082001311
    [16]
    Tomkins C D, Adrian R J. Spanwise structure and scale growth in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2003, 490:37-74. doi: 10.1017/S0022112003005251
    [17]
    Bacher E V, Smith C R. Turbulent boundary-layer modification by surface riblets[J]. AIAA Journal, 1986, 24(8):1382-1385. doi: 10.2514/3.48695
    [18]
    Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface[J]. Experiments in Fluids, 2001, 30(2):153-166. doi: 10.1007/s003480000150
    [19]
    Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255:503-539. doi: 10.1017/S0022112093002575
    [20]
    Suzuki Y, Kasagi N. Turbulent drag reduction mechanism above a riblet surface[J]. AIAA Journal, 1994, 32(9):1781-1790. doi: 10.2514/3.12174
    [21]
    Hou J F, Hokmabad B V, Ghaemi S. Three-dimensional measurement of turbulent flow over a riblet surface[J]. Experimental Thermal and Fluid Science, 2017, 85:229-239. doi: 10.1016/j.expthermflusci.2017.03.006
    [22]
    黄德斌, 邓先和, 王杨君.沟槽面管道湍流减阻的数值模拟研究[J].水动力学研究与进展, 2005, 20(1):101-105. https://www.wenkuxiazai.com/doc/1454aada6f1aff00bed51e42-3.html

    Huang D B, Deng X H, Wang Y J. Numerical simulation study of turbulent drag reduction over ribelt surfaces of tubes[J]. Journal of Hydrodynamics. 2005, 20(1):101-105. https://www.wenkuxiazai.com/doc/1454aada6f1aff00bed51e42-3.html
    [23]
    赵志勇, 董守平, 都亚男.沟槽面对湍流边界层流动特征影响的实验研究[J].实验流体力学, 2004, 18(2):59-64. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract10184.shtml

    Zhao Z Y, Dong S P, Du Y N. An experimental study of turbulent boundary layer over the grooved-surface[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(2):59-64. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract10184.shtml
    [24]
    Yang S Q, Li S, Tian H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica, 2016, 32(2):284-294. doi: 10.1007/s10409-015-0541-3
    [25]
    丛茜, 封云, 任露泉.仿生非光滑沟槽形状对减阻效果的影响[J].水动力学研究与进展:A辑, 2006, 21(2):232-238. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200605001.htm

    Cong Q, Feng Y, Ren L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics:A, 2006, 21(2):232-238. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200605001.htm
    [26]
    García-Mayoral R, Jiménez J. Drag reduction by riblets[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2011, 369(1940):1412-1427. doi: 10.1098/rsta.2010.0359
    [27]
    Yang W, Meng H, Sheng J. Dynamics of hairpin vortices generated by a mixing tab in a channel flow[J]. Experiments in Fluids, 2001, 30(6):705-722. doi: 10.1007/s003480000252
    [28]
    Hambleton W T, Hutchins N, Marusic I. Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 560:53-64. doi: 10.1017/S0022112006000292
    [29]
    Natrajan V K, Wu Y, Christensen K T. Spatial signatures of retrograde spanwise vortices in wall turbulence[J]. Journal of Fluid Mechanics, 2007, 574:155-167. doi: 10.1017/S0022112006003788
    [30]
    Wu Y, Christensen K T. Population trends of spanwise vortices in wall turbulence[J]. Journal of Fluid Mechanics, 2006, 568:55-76. doi: 10.1017/S002211200600259X
    [31]
    Clauser F H. The turbulent boundary layer[J]. Advances in Applied Mechanics, 1956, 4:1-51. doi: 10.1016/S0065-2156(08)70370-3
    [32]
    樊星, 姜楠.用平均速度剖面法测量壁湍流摩擦阻力[J].力学与实践, 2005, 27(1):28-30. http://d.wanfangdata.com.cn/Periodical_lxysj200501007.aspx

    Fan X, Jiang N. Skin friction measurement in turbulent boundary layer by mean velocity profile method[J]. Mechanics in Engineering, 2005, 27(1):28-30. http://d.wanfangdata.com.cn/Periodical_lxysj200501007.aspx
    [33]
    Lee S J, Choi Y S. Decrement of spanwise vortices by a drag-reducing riblet surface[J]. Journal of Turbulence, 2008, 9(23):1-15. https://core.ac.uk/display/51366135
    [34]
    Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. doi: 10.1063/1.857730
    [35]
    Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. doi: 10.1017/S002211209900467X
    [36]
    Christensen K T, Wu Y, Adrian R J, et al. Statistical imprints of structure in wall turbulence[R]. AIAA-2004-1116, 2004.
    [37]
    Volino R J, Schultz M P, Flack K A. Turbulence structure in rough-and smooth-wall boundary layers[J]. Journal of Fluid Mechanics, 2007, 592:263-293. https://www.usna.edu/NAOE/_files/documents/Faculty/schultz/Volino,%20Schultz,%20Flack%20-%20Turbulence%20Structure%20in%20Rough%20and%20Smooth,%202007.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (388) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return