Wei Feng, Zhou Zheng, Li Li, et al. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. doi: 10.11729/syltlx20170049
Citation: Wei Feng, Zhou Zheng, Li Li, et al. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. doi: 10.11729/syltlx20170049

Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range

doi: 10.11729/syltlx20170049
  • Received Date: 2017-04-25
  • Rev Recd Date: 2017-09-07
  • Publish Date: 2017-12-25
  • The self-start ability, anti-backpressure performance and side slip influences to the performance of the Curved Cone Waverider forebody Inlet(CCWI) were experimentally studied in the present paper. Based on the geometrically constrained and bluntly modified practical CCWI wind tunnel experimental model, using the inlet throttling systems, the static pressure distributions and high resolution sherilen maps of the CCWI's flow field were obtained at free steam Mach numbers(Ma) 3.0, 3.5 and 4.0 at different throttling cone positions. The experimental results show that the integrated CCWI model can self-start at Ma 3.5 and 4.0. At the angle of attack 0°, its maximum anti-back pressure abilities is about 24 and 33 times of the free stream static pressure(p) at Ma 3.5 and 4.0, respectively. Side slip has little influence on mass flow capture and flow compression abilities for CCWI. The study on CCWI can be used for practical integration studies with scramjet engine and air-breathing vehicles.
  • loading
  • [1]
    Richard M, Scott M. X-51 development:a chief engineer's perspective[C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011.
    [2]
    Kuchemann D. The aerodynamic design of aircraft[M]. Oxford:Pergamon Press, 1978:448-510.
    [3]
    Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. Published by American Institute of Aeronautics and Astronautics Inc, 1994:32-33.
    [4]
    Haney J W, Beaulieu W D. Wave rider inlet integration issues[R]. AIAA-1994-0383, 1994.
    [5]
    Vijay S, Andrew G, Mark S. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2):308-316. https://core.ac.uk/display/21977620
    [6]
    Thomas M B, Norbert C B. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1):30-36. doi: 10.2514/3.26994
    [7]
    Frederick S B, Robert A B, Tam C J. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999. doi: 10.2514/6.1999-4974
    [8]
    Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. doi: 10.2514/2.5459
    [9]
    O'Neill M K, Lewis M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1123. doi: 10.2514/3.56866
    [10]
    Takashima N, Lewis M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-96-2551, 1996. doi: 10.2514/6.1996-2551
    [11]
    O'Brien T F, Lewis M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. doi: 10.2514/2.2880
    [12]
    Sobieczky H, Dougherty F C, Jones K D. Hypersonic waverider design from given shock waves[C]//Proceedings of the First International Hypersonic Wave rider Symposium, University of Maryland, College Park, MD, 1990. https://www.researchgate.net/publication/225015124_Hypersonic_Waverider_Design_from_Given_Shock_Waves
    [13]
    Ryan P S, Mark J L. Design of an engine-airframe integrated hypersonic missile within fixed box constraints[R]. AIAA-99-0509, 1999. doi: 10.2514/6.1999-509
    [14]
    You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009. doi: 10.2514/6.2009-7421
    [15]
    Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014. doi: 10.2514/6.2014-3229
    [16]
    贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进技术, 2012, 33(4):510-515. http://www.oalib.com/paper/5111622

    He X Z, Zhou Z, Ni H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. http://www.oalib.com/paper/5111622
    [17]
    He X Z, Le J L, Zhou Z, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods and experimental study[R]. AIAA-2012-5810, 2012. doi: 10.2514/6.2012-5810?mi=8fbwx6&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=xuzhao%2C+h
    [18]
    周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能实验研究[J].推进技术, 2016, 37(8):1455-1460. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201608007&dbname=CJFD&dbcode=CJFQ

    Zhou Z, He X Z, Wei F, et al. Experimental studies of osculating inward turning cone waverider forebody inlet(OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201608007&dbname=CJFD&dbcode=CJFQ
    [19]
    贺旭照, 乐嘉陵.曲外锥乘波体进气道实用构型设计和性能分析[J].航空学报, 2016, DOI: 10.7527/S1000-6893.2016.0289.

    He X Z, Le J L. Design and performances analysis of a practical curved cone waverider inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, DOI: 10.7527/S1000-6893.2016.0289.
    [20]
    He X Z, Le J L, Wu Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009. doi: 10.2514/6.2009-7423
    [21]
    贺旭照, 倪鸿礼.密切曲面锥乘波体-设计方法和性能分析[J].力学学报, 2011, 43(6):1077-1082. doi: 10.6052/0459-1879-2011-6-lxxb2010-502

    He X Z, Ni H L. Osculating curved cone(OCC) waverider:Design method and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. doi: 10.6052/0459-1879-2011-6-lxxb2010-502
    [22]
    Trent T, David Van W. Performance analysis of hypersonic shape changing inlets derived from morphing streamline traced flowpaths[R]. AIAA-2008-2635, 2008. doi: 10.2514/6.2008-2635
    [23]
    [24]
    He X Z, Zhao H Y, Le J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamic Sinica, 2006, 24(4):450-453. https://www.researchgate.net/publication/293761189_Application_of_wall_function_boundary_condition_considering_heat_transfer_and_compressibility
    [25]
    Simon T, Philippe D, Sébastien D. Experimental study of supersonic inlet buzz[J]. AIAA Journal, 2006, 44(10):2354-2365. doi: 10.2514/1.20451
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (211) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return