Chen Bo, Du Kun, Yang Qingshan. Wind pressure on flat roof building in heterogeneous terrain[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 46-51, 59. doi: 10.11729/syltlx20160213
Citation: Chen Bo, Du Kun, Yang Qingshan. Wind pressure on flat roof building in heterogeneous terrain[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 46-51, 59. doi: 10.11729/syltlx20160213

Wind pressure on flat roof building in heterogeneous terrain

doi: 10.11729/syltlx20160213
  • Received Date: 2016-12-26
  • Rev Recd Date: 2017-04-26
  • Publish Date: 2017-06-25
  • With pressure measurement experiments in wind tunnel, wind pressure distribution on the flat roof of a building in two kinds of uniform terrains and one kind of heterogeneous terrain was investigated. The results demonstrate: the mean and fluctuating wind pressure coefficients on the roof in a uniform rough terrain are larger than those in a uniform smooth terrain, and this difference of the fluctuating pressure is more significant; When the pressure coefficients are normalized by the dynamic wind pressure of the building location, fluctuating wind pressure coefficients decrease significantly and mean pressure coefficients change slowly with an increase of the distance from the terrain change point to the building location in a rough to smooth heterogeneous terrain; When the pressure coefficients are normalized by the dynamic wind pressure of upstream terrain, mean pressure coefficients at the separation area change slowly, the amplitudes at the downstream roof area increase, and fluctuating wind pressure coefficients decrease slightly with an increase of the distance from the terrain change point to the building location, but these changes are small in the range of transition boundary layer; The main factor affecting total mean wind loads on the roof is the incoming dynamic pressure.
  • loading
  • [1]
    Logan E, Fichtl G H. Rough-to-smooth transition of an equilibrium neutral constant stress layer[J]. Boundary-Layer Meteorology, 1975, 8(3): 525-528. doi: 10.1007/BF02153569
    [2]
    Deaves D M. Terrain-dependence of longitudinal R. M. S. velocities in the neutral atmosphere[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 8(3): 259-274. doi: 10.1016/0167-6105(81)90025-8
    [3]
    Porté-Agel M A F. A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions [J]. Journal of Turbulence, 2012, 13(23): 1-18. doi: 10.1080/14685248.2012.695077?src=recsys
    [4]
    Bradley E F. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness[J]. Quarterly Journal of the Royal Meteorological Society, 1968, 94(401): 361-379. doi: 10.1002/(ISSN)1477-870X
    [5]
    Wang K. Modeling terrain effects and application to the wind loading of low buildings[D]. Montreal: Concordia University, 2005.
    [6]
    Lettau H. Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description[J]. Journal of Applied Meteorology and Climatology, 1969, 8(5): 828-832. doi: 10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2
    [7]
    Sill B L, Fang C. Effect of upstream roughness element distribution on wind loads on low rise structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36: 1289-1297. doi: 10.1016/0167-6105(90)90125-V
    [8]
    Panofsky H A, Petersen E L. Wind profiles and change of terrain roughness at Risø[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(418): 845-854. http://adsabs.harvard.edu/abs/1972QJRMS..98..845P
    [9]
    Cao S, Tamura T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(1): 1-19. doi: 10.1016/j.jweia.2005.10.001
    [10]
    Cao S, Tamura T. Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8): 679-695. doi: 10.1016/j.jweia.2007.01.002
    [11]
    刘熙明, 胡非.大气边界层的研究——从均匀到非均匀[J].气象与减灾研究, 2007, 30(2): 44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO200702008.htm

    Liu X M, Hu F. Atmospheric Boundary Layer(ABL) research: from homogeneous to heterogeneous[J]. Meteorology and Disaster Reduction Research, 2007, 30(2): 44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO200702008.htm
    [12]
    Liu M, Chen X, Yang Q. Characteristics of dynamic pressures on a saddle type roof in various boundary layer flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 150: 1-14. doi: 10.1016/j.jweia.2015.11.012
    [13]
    Yong C K, Yoshida A, Tamura Y. Characteristics of surface wind pressures on low-rise building located among large group of surrounding buildings[J]. Engineering Structures, 2012, 35: 18-28. doi: 10.1016/j.engstruct.2011.10.024
    [14]
    中国建筑科学研究院. GB 50009—2012建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012: 31-33.

    China Academy of Building Research. GB 50009—2012 load code for the design of building structures[S]. Beijing: China Architecture and Building Press, 2012: 31-33.
    [15]
    ASCE Standard. ASCE 7-10 Minimum design loads for buildings and other structures[S]. American Society of Civil Engineers, 2010: 246-254.
    [16]
    陈波, 骆盼育, 杨庆山.测压管道系统频响函数及对风效应的影响[J].振动与冲击, 2014(3): 130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201403025.htm

    Chen B, Luo P Y, Yang Q S. Frequency response function of a pressure measurement pipe system and its effect on structural wind effects[J]. Journal of Vibration and Shock, 2014, 33(3): 130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201403025.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (138) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return