Deng Xiangdong, Song Xiaoyu, Ji Jun, et al. Research on static thrust accurate measurement testing technology of vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 90-97. doi: 10.11729/syltlx20160187
Citation: Deng Xiangdong, Song Xiaoyu, Ji Jun, et al. Research on static thrust accurate measurement testing technology of vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 90-97. doi: 10.11729/syltlx20160187

Research on static thrust accurate measurement testing technology of vectoring nozzle

doi: 10.11729/syltlx20160187
  • Received Date: 2016-12-06
  • Rev Recd Date: 2017-11-15
  • Publish Date: 2018-02-25
  • The principle, test bench and method of the vectoring nozzle static thrust measurement experimental technology are introduced in this paper. The primary simulation parameters are the nozzle pressure ratio (NPR) and the Mach number at the nozzle exhaust. The nozzle model is installed in the vacuum cabin of the thrust test bench, and aerodynamic forces of the nozzle model are measured accurately by the wall balance. After the mass flow correction, installation position correction, and the correction of pressure effect and mass flow effect to the balance caused by the air bridge system based on the rubber membrane, the exact values of the vector nozzle static thrust, thrust coefficient and vector angles etc. are obtained. The experimental results show that the axial thrust coefficient, the normal thrust coefficient and the variation trend of vector angle with NPR, which is measured in the vector nozzle static thrust measurement experiment using the thrust test bench are correct, the test results precision can satisfy the GJB requirements for force-test precision, and the technique can be applied in project test.
  • loading
  • [1]
    王如根, 高坤华.航空发动机新技术[M].北京:航空工业出版社, 2003.

    Wang R G, Gao K H. The new technology of aero engine[M]. Beijing:Aviation Industry Press, 2003.
    [2]
    Steven A. Thrust vectoring:a new angle to air superiority[J]. Mechanical Engineering, 1995:58-64. https://dialnet.unirioja.es/servlet/articulo?codigo=401939
    [3]
    Thomas M B, Norbert C B. Thrust vector behaviorof highly integrated asymmetric nozzle for advanced fighter aircraft[R]. AIAA-98-0948, 1998.
    [4]
    王猛杰, 额日其太, 王强, 等.激波矢量控制喷管落压比影响矢量性能及分离区控制数值模拟[J].航空动力学报, 2015, 30(2):526-536. doi: 10.13224/j.cnki.jasp.2015.03.002.html

    Wang M J, Eriqitai, Wang Q, et al, Numerical simulation of nozzle pressure ratio effect on vector performance and separation control for shock vector control nozzle[J]. Journal of Aerospace Power, 2015, 30(2):526-536. doi: 10.13224/j.cnki.jasp.2015.03.002.html
    [5]
    Karen A D. Summary of fluidic thrust vectoring research conducted at NASA Langley research center[R]. AIAA-2003-3800, 2003. http://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-aiaa-2003-3800.pdf
    [6]
    Wing D J. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle[R]. NASA TM-4574, 1994. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950012627.pdf
    [7]
    Deere K A. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[R]. AIAA-2000-3598, 2000. https://www.scientific.net/amr.998-999.613.pdf
    [8]
    Andrew J N, Fernando N G, John Y. Performance studies of shock vector control fluidic thrust vectoring[R]. AIAA-2007-5086, 2007.
    [9]
    谭杰, 金捷.单边膨胀喷管几何参数对内特性和流场的影响[J].推进技术, 2013, 34(2):152-160. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201302003&dbname=CJFD&dbcode=CJFQ

    Tan J, Jin J. Effect of geometric parameters on internalperformance and flow field on single expansion ramp nozzles[J]. Journal of Propulsion Technology, 2013, 34(2):152-160. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201302003&dbname=CJFD&dbcode=CJFQ
    [10]
    Bousquet J M. Survey of engine integration testing in ONERA wind tunnels[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005. http://mams.rmit.edu.au/42tca1i3stiy.doc
    [11]
    Fluidic Dynamics Panel Working Group 19. Sonic nozzles for mass flow measurement and reference nozzles for thrust verification[R]. AGARD-AR-321, 1997. http://dtic.mil/cgi-bin/GetTRDoc?AD=ADA326995
    [12]
    范洁川.风洞试验手册[M].北京:航空工业出版社, 2002.

    Fan J C. Handbook of wind tunnel test[M]. Beijing:Aviation Industry Press, 2002.
    [13]
    Beale D K. Experimental measurement of venturi discharge coefficient including sensitivity to geometric and flow quality variables[R]. AIAA-99-0304, 1999.
    [14]
    章荣平, 王勋年, 黄勇, 等.低速风洞全模TPS试验空气桥的设计与优化[J].试验流体力学, 2012, 26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011

    Zhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011
    [15]
    Becle J P, Girard D. Development of strain gage balances with air flow-through system for ONERA wind tunnels[C]. Seventy-first Simi-annual S T A Meeting, 1989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (155) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return