Tian Weifang, Zheng Xu, Li Zhanhua, et al. Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 16-21. doi: 10.11729/syltlx20160163
Citation: Tian Weifang, Zheng Xu, Li Zhanhua, et al. Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 16-21. doi: 10.11729/syltlx20160163

Measuring DLVO force and surface potential based on AFM colloidal probe technique at liquid-solid interfaces

doi: 10.11729/syltlx20160163
  • Received Date: 2016-10-31
  • Rev Recd Date: 2017-01-09
  • Publish Date: 2017-08-25
  • Surface potential is an important parameter of the fluid flow in microfluidics. This study develops a method to measure the surface potential and surface charge density based on the DLVO force obtained by colloidal probe technique using atomic force microscope (AFM). A novel procedure of colloidal probe fabrication is proposed, and then a cantilever-to-cantilever calibration method is used to determine the spring constant of the colloidal probe. We thus measure DLVO forces and surface potentials of silicon, silica and silicon nitride substrates, in 0.1 mM to 1 mM NaCl solutions respectively. The results show that our approach could well measure the DLVO forces at the liquid-solid interfaces, which is especially sensitive to the exponential variation of the electrostatic force. The surface potential, the surface charge density and other important parameters can be obtained via fitting the force curves. Additionally, the variation of surface potentials at different silicon-based surfaces indicates that the density of silane groups plays a dominant role on the surface potential. Thus it is possible to effectively control the surface potential by changing the silane density of the silicon-based materials. The findings could be valuable to regulating electro kinetic flow intensity in microfluidic chips.
  • loading
  • [1]
    Israelachvili J N. Intermolecular and surface forces[M]. Academic Press, 2011.
    [2]
    李战华, 吴健康, 胡国庆等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.

    Li Z H, Wu J K, Hu G Q, et al. Fluid flow in microfluidic chips[M]. Beijing:Science Press, 2012.
    [3]
    林炳承, 秦建华.图解微流控芯片实验室[M].北京:科学出版社, 2008.

    Lin B C, Qin J H. Graphic laboratory on a microfluidic chip[M]. Beijing:Science Press, 2008.
    [4]
    Kirby B J, Hasselbrink E F. Zeta potential of microfluidic substrates:Theory, experimental techniques, and effects on separations[J]. Electrophoresis, 2004, 25(2):187-202. doi: 10.1002/(ISSN)1522-2683
    [5]
    Schoch R, Han J, Renaud P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883. doi: 10.1103/RevModPhys.80.839
    [6]
    Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope:technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1-6):1-152. doi: 10.1016/j.surfrep.2005.08.003
    [7]
    Audry M C, Piednoir A, Joseph P, et al. Amplification of electro-osmotic flows by wall slippage:direct measurements on OTS surfaces[J]. Faraday Discussions, 2010, 146(146):113-124. http://www.ncbi.nlm.nih.gov/pubmed/21043417
    [8]
    郝旭欢, 常博, 郝旭丽. MEMS传感器的发展现状及应用综述[J].无线互联科技, 2016, 3:95-96. doi: 10.3969/j.issn.1672-6944.2016.03.042

    Hao X H, Chang B, Hao X L. Current development and application of MEMS sensors[J]. Wireless Internet Technology, 2016, 3:95-96. doi: 10.3969/j.issn.1672-6944.2016.03.042
    [9]
    Horn R G, Vinogradova O I, Mackay M E, et al. Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer[J]. Journal of Chemical Physics, 2000, 112(14):6424-6433. doi: 10.1063/1.481274
    [10]
    Van Zwol P J, Palasantzas G, Van de Schootbrugge M, et al. Roughness of microspheres for force measurements[J]. Langmuir, 2008, 24(14):7528-7531. doi: 10.1021/la800664f
    [11]
    Sader J E, Larson I, Mulvaney P, et al. Method for the calibration of atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1995, 66(7):3789-3798. doi: 10.1063/1.1145439
    [12]
    Butt H J, Jaschke M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6(1):1-7. doi: 10.1088/0957-4484/6/1/001
    [13]
    Sader J E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of Applied Physics, 1998, 84(1):64-76. doi: 10.1063/1.368002
    [14]
    Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10):3967-3969. doi: 10.1063/1.1150021
    [15]
    Cleveland J P, Manne S, Bocek S, et al. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy[J]. Review of Scientific Instruments, 1993, 64(2):403-405. doi: 10.1063/1.1144209
    [16]
    Kuznetsov V, Papastavrou G. Ion adsorption on modified electrodes as determined by direct force measurements under potentiostatic control[J]. The Journal of Chemical Physics C, 2014, 118(5):2673-2685. doi: 10.1021/jp500425g
    [17]
    Ducker W A, Senden T J, Pashley R M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature, 1991, 353(353):239-241. http://cat.inist.fr/?aModele=afficheN&cpsidt=4998932
    [18]
    Horn R G, Smith D T. Measuring surface forces to explore surface chemistry:Mica, sapphire and silica[J]. Journal of Non-Crystalline Solids, 1990, 120(1-3):72-81. doi: 10.1016/0022-3093(90)90192-O
    [19]
    Legrand P A. The surface properties of silicas[J]. International Journal of Food Science & Technology, 2015, 50(4):966-973. http://ci.nii.ac.jp/ncid/BA35783269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (285) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return