Zhang Chao, Zhu Jihong, Wu Linfeng, et al. Experiment study of propulsion-induced flow on aircraft aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 22-27, 33. doi: 10.11729/syltlx20160154
Citation: Zhang Chao, Zhu Jihong, Wu Linfeng, et al. Experiment study of propulsion-induced flow on aircraft aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 22-27, 33. doi: 10.11729/syltlx20160154

Experiment study of propulsion-induced flow on aircraft aerodynamics

doi: 10.11729/syltlx20160154
  • Received Date: 2016-10-13
  • Rev Recd Date: 2017-02-02
  • Publish Date: 2017-08-25
  • The characteristics of aircraft aerodynamic are the fundamental characteristics of aircraft. The influence of the propulsion-induced flow on the aerodynamic force is directly related to the accuracy of the aerodynamic modeling, the flight quality and the flight safety. A real turbojet engine is installed in a scaled-down aircraft model, and a more realistic static force measurement test is conducted under the different engine thrust force, air flow velocity and direction conditions. The results show that the influence of the propulsion-induced flow is mainly reflected in the axial force, the normal force and the pitching moment. The greater the engine thrust is, the more obvious the propulsion-induced effect is. And the maximum increment value of the normal force and the pitching moment appears with an angle of attack larger than the stall angle of attack. And the sideslip angle, wind speed (small range), as well as the control surfaces deflection caused by the aerodynamic increment is mainly manifested in the stall angle of attack. Therefore, the impact of propulsion-induced effect must be considered in the high angle of attack maneuver study.
  • loading
  • [1]
    Wang Z J, Jiang P, Ismet G. Effect of thrust-vectoring jets on delta wing aerodynamics[J]. Journal of Aircraft, 2007, 44(6):1877-1888. doi: 10.2514/1.30568
    [2]
    Paulson J W. Analysis of thrust-induced effects on the longitudinal aerodynamics of STOL fighter configurations[J]. Journal of Aircraft, 1981, 18(11):951-955. doi: 10.2514/3.57585
    [3]
    Roppen W A, Smith B E, Lye J D. Propulsion-induced aerodynamics of an ejector-configured STOVL fighter aircraft[R]. AIAA-91-0765, 1991.
    [4]
    Banks D W, Quinto P F, Paulson J W. Thrust-induced effects on low-speed aerodynamics of fighter aircraft[R]. AIAA-81-2612, 1981.
    [5]
    Richard J M. Review of propulsion-induced effects on aerodynamics of jet/STOL aircraft[R]. NASA Technical Note, TN D-5617, 1970.
    [6]
    Scott C A, Francis J C. Multiaxis thrust-vectoring characteristics of a model representative of the F-18 high-alpha research vehicle at angles of attack from 0° to 70°[R]. NASA Technical Paper 3531, 1995.
    [7]
    Albion H B, Joseph W P. Thrust vectoring on the NASA F-18 high alpha research vehicle[R]. NASA Technical Paper 4771, 1996.
    [8]
    Krist S, Tseng J, Lan C. Numerical simulation of propulsion-induced aerodynamic characteristics on a wing-afterbody configuration with thrust vectoring[R]. SAE Technical Paper 911174, 1991.
    [9]
    Erich A W, Dan A, Pinhas B Y. Thrust-vectoring nozzle performance modeling[J]. Journal of Propulsion and Power, 2003, 19(1):39-47. doi: 10.2514/2.6100
    [10]
    Capone F J, Berrier B L. Investigation of axisymmetric and nonaxisymmetric nozzles installed on a 0.10-scale f-18 prototype airplane model[R]. NASA Technical Paper 1638, 1980.
    [11]
    Capone F. Aeropropulsive characteristics at mach numbers up to 2.2 of axisymmetric and nonaxisymmetric nozzles installed on an F-18 model[R]. NASA Technical Paper 2004, 1984.
    [12]
    Ryan R W, Franke M E. Dynamic response of an axisymmetric thrust vector control nozzle[R]. AIAA-91-0344, 1991.
    [13]
    Francis J C. Static performance of five twin-engine non-axisymmetric nozzles with vectoring and reversing capability[R]. NASA Technical Paper 1224, 1978.
    [14]
    马建, 杨青真, 李岳峰. V形尾翼无人机喷流对气动力特性干扰的数值模拟[J].西北工业大学学报, 2010, 28(1):107-112. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201001025.htm

    Ma J, Yang Q Z, Li Y F. Numerically simulating aerodynamic characteristics of UAV with V-tail with high-speed high-tempreture jet flow interference considered[J]. Journal of Northwestern Polytechnical University, 2010, 28(1):107-112. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201001025.htm
    [15]
    谭献忠, 丁则胜, 陈少松, 等.弹丸前体喷流的气动力干扰实验研究[J].淮阴师范学院学报(自然科学版), 2004, 3(3):206-209. http://www.cnki.com.cn/Article/CJFDTOTAL-HYSK200403009.htm

    Tan X Z, Ding Z S, Chen S S, et al. Experiment study of aerodynamic interactions of projectile with jet from its forebody[J]. Journal of Huaiyin Teachers College (Natural Science Edition), 2004, 3(3):206-209. http://www.cnki.com.cn/Article/CJFDTOTAL-HYSK200403009.htm
    [16]
    黄勇, 姜裕标, 沈礼敏, 等. 低速风洞推力转向试验技术研究[C]. 2003空气动力学前沿研究研讨会论文集. 北京: 中国空气动力学会, 2003: 245-251.

    Huang Y, Jiang Y B, Shen L M, et al. Low speed wind tunnel thrust vectoring test technology research[C]. 2003 Aerodynamic Cutting-edge Research Seminar, 2003:245-251.
    [17]
    徐筠, 朱涛, 许晓斌, 等. 某新型侧向喷流试验技术研究[C]. 第9届全国实验流体力学学术会议论文. 2013: 48-53.

    Xu Y, Zhu T, Xu X B, et al. Experimental technique investigation on a novelty lateral jet in φ1m hypersonic wind tunnel[C]. 9th National Experimental Fluid Mechanics Conference, 2013:48-53.
    [18]
    贾毅, 郑芳, 黄浩, 等.低速风洞推力矢量试验技术研究[J].实验流体力学, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml

    Jia Y, Zheng F, Huang H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml
    [19]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (112) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return