Zeng Hui, Li Fei, Yu Xilong, et al. Mid-infrared absorption combustion diagnostics for an ADN based thruster[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 47-53. doi: 10.11729/syltlx20160147
Citation: Zeng Hui, Li Fei, Yu Xilong, et al. Mid-infrared absorption combustion diagnostics for an ADN based thruster[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 47-53. doi: 10.11729/syltlx20160147

Mid-infrared absorption combustion diagnostics for an ADN based thruster

doi: 10.11729/syltlx20160147
  • Received Date: 2016-10-08
  • Rev Recd Date: 2016-11-16
  • Publish Date: 2017-02-25
  • ADN monopropellant green space propulsion is perceived as a focus of the space propulsion research worldwide. Experimental study is in urgent requirement for understanding the combustion process in the ADN based thruster and for quantitative evaluation and optimization of the combustion stability and the thruster performance. In this paper, experiments were conducted to measure the concentration of the key intermediate products (CO, N2O) and the temperature of the combustion gas flow based on the mid-infrared quantum cascade laser absorption spectroscopy (QCLAS). Two main ignition modes of the 1 N ADN based thruster are studied: the steady-state firing and the pulse-mode firing over the injection pressure of 0.5~1.2MPa bar with catalytic bed length of 19 mm, corresponding to a current thruster prototype. It is found in the steady-state firing experiments that the whole process can be divided into the catalytic decomposition stage and the combustion stage, and the combustion kinetics mechanism of the monopropellant is experimentally demonstrated. Experiments for the pulse-mode firing show the variance of the measured multispecies concentration and temperature in consistence with the pulse trains, verifying the good performance of the thruster pulse-mode firing operation.
  • loading
  • [1]
    Gohardani A S, Stanojev J, Demaire A, et al. Green space propulsion: Opportunities and prospects[J]. Progress in Aerospace Sciences, 2014, 71: 128-149. doi: 10.1016/j.paerosci.2014.08.001
    [2]
    Kamal F, Yann B, Rachid B, et al. Application of ionic liquids to space propulsion[M]. Rijeka, Croatia: InTech, 2011: 447-466.
    [3]
    Amrousse R, Hori K, Fetimi W, et al. HAN and ADN as liquid ionic monopropellants: thermal and catalytic decomposition processes[J]. Applied Catalysis B: Environmental, 2012. 127: 121-128. doi: 10.1016/j.apcatb.2012.08.009
    [4]
    Kappenstein C, Batonneau Y, Perianu E, et al. Non toxic ionic liquids as hydrazine substitutes. Comparison of physico-chemical properties and evaluation of ADN and HAN[C]//Proc of 2nd European Space Agency International Conference on Green Propellants for Space Propulsion (ESA SP-577), 2004.
    [5]
    Bombelli V, Marée T, Caramelli F. Non-toxic liquid propellant selection method-a requirement oriented approach[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2005.
    [6]
    Anflo K, Crowe B. In-space demonstration of an ADN-based propulsion system[C]. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2011.
    [7]
    Anflo K, Grönland T A, Wingborg N. Development and testing of ADN-based monopropellants in small rocket engines[C]. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2000.
    [8]
    Anflo K, Grönland T A. Towards green propulsion for spacecraft with ADN-based monopropellants[C]. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2002.
    [9]
    Anflo K, Mollerberg R. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite[J]. Acta Astronautica, 2009, 65 (9-10): 1238-1249. doi: 10.1016/j.actaastro.2009.03.056
    [10]
    Neff K, King P, Anflo K, et al. High performance green propellant for satellite applications[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2009.
    [11]
    Anflo K, Persson S, Bergman G, et al. Flight demonstration of an ADN-based propulsion system on the PRISMA satellite[C]. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2006.
    [12]
    Hanson R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33 (1): 1-40. doi: 10.1016/j.proci.2010.09.007
    [13]
    Yao Z, Zhang W, Wang M, et al. Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion[J]. Aerospace Science and Technology, 2015. 45: 140-149. doi: 10.1016/j.ast.2015.05.003
    [14]
    Zeng H, Li F, Zhang S, et al. Midinfrared absorption measurements of nitrous oxide in ammonium dinitramide monopropellant thruster[J]. Journal of Propulsion and Power, 2015, 31 (5): 1496-1500. doi: 10.2514/1.B35648
    [15]
    张伟, 沈岩, 姚兆普, 等. 基于量子级联激光器的ADN基液体发动机稳态燃烧CO特征浓度的实验测量[J]. 中国科学技术科学 (中文版), 2015, 45 (1): 15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201501003.htm

    Zhang W, Shen Y, Yao Z P, et al. Concentration measurement of carbon monoxide in the combustion chamber of ADN-based thruster with QCL[J]. Sci Sin Tech, 2015, 45 (1): 15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201501003.htm
    [16]
    张伟, 沈岩, 余西龙, 等. ADN基发动机燃烧室CO组分实验测量[J]. 推进技术, 2015, 36 (5): 650-655. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201505002.htm

    Zhang W,Shen Y,Yu X L, et al. Concentration measurement of carbon monoxide in combustion chamber of an ADN-Based propellant thruster[J]. Journal of Propulsion Technology, 2015, 36 (5): 650-655. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201505002.htm
    [17]
    Sinditskii V P, Egorshev V Y, Levshenkov A I, et al. Combustion of ammonium dinitramide, Part 2: combustion mechanism[J]. Journal of Propulsion and Power, 2006, 22 (4): 777-785. doi: 10.2514/1.17955
    [18]
    Baer D S, Nagali V, Furlong E R, et al. Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers[J]. AIAA Journal, 1996, 34 (3): 489-493. doi: 10.2514/3.13094
    [19]
    Nagali V, Chou S I, Baer D S, et al. Tunable diode-laser absorption measurements of methane at elevated temperatures[J]. Applied Optics, 1996, 35 (21): 4026-4032. doi: 10.1364/AO.35.004026
    [20]
    Spearrin R, Goldenstein C, Schultz I, et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy[J]. Applied Physics B, 2014, 117 (2): 689-698. doi: 10.1007/s00340-014-5884-0
    [21]
    Schultz I A, Goldenstein C S, Mitchell R Spearrin, et al. Multispecies midinfrared absorption measurements in a hydrocarbon-fueled scramjet combustor[J]. Journal of Propulsion and Power, 2014, 30 (6): 1595-1604. doi: 10.2514/1.B35261
    [22]
    Thakre P, Duan Y, Yang V. Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed and gas phase kinetics[J]. Combustion and Flame, 2014, 161 (1): 347-362. doi: 10.1016/j.combustflame.2013.08.006
    [23]
    Li J, Zhao Z, Kazakov A, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39 (3): 109-136. doi: 10.1002/kin.20218
    [24]
    屠善澄. 卫星姿态动力学与控制[M]. 北京: 中国宇航出版社, 2006.
    [25]
    Hinckel J N, Jorge J A, Neto T G S, et al. Low cost catalysts for hydrazine monopropellant thrusters[C]//Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (205) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return