Wang Weihua, Huang Hanjie. Study of snow-load distribution on roof by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 23-28. doi: 10.11729/syltlx20160039
Citation: Wang Weihua, Huang Hanjie. Study of snow-load distribution on roof by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 23-28. doi: 10.11729/syltlx20160039

Study of snow-load distribution on roof by wind tunnel test

doi: 10.11729/syltlx20160039
  • Received Date: 2016-03-07
  • Rev Recd Date: 2016-06-03
  • Publish Date: 2016-10-25
  • In order to predict the snow-load distribution on a roof, wind tunnel tests were conducted with fine quartz-sand to simulate snow particles. The snow coefficients of several typical roofs were obtained through snowfall simulation and redistribution tests, and were compared with the load design of building structures. The results show that, when the wind speed exceeds the threshold value, the efficient aerodynamic-rough-length increases as the wind speed increases; the snow coefficients of the stepped roof obtained in the tests are within the load specifications; for the single-span gable roof, the snow coefficients of the windward roof may exceed the load specifications, particularly for the 20° roof, while the 10° roof snow coefficients decrease with time and finally fall into the range of load specifications; for the double-span gable roof, in snowfall simulation tests, the largest coefficient lies on the first windward roof, the value of which is less than the load specifications, while in the simulation redistributions test, the largest coefficient lies on the first leeward roof, the value is approximately 1.5, larger than the load specifications.
  • loading
  • [1]
    Feld J, Carper K. Construction Failure[M]. 2nd ed. New York:John Wiley & Sons, 1997.
    [2]
    Perski Z, Leijen F van, Hanssen R. Applicability of psinsar for building hazard identification:Study of the 29 January 2006 Katowice Exhibition Hall collapse and the 24 February 2006 Moscow Basmanny Market collapse[C]//Proceedings of the Envisat Symposium 2007, Monteux, Switzerland, 2007.
    [3]
    Lomovtsev E, Grishin A. Market collapse-Moscow's largest-ever man-made disaster[J]. Current Digest of the Russian Press, 2006, 58(9):4-5.
    [4]
    王元清, 胡宗文, 石永久, 等.门式刚架轻型房屋钢结构雪灾事故分析与反思[J].土木工程学报, 2009, 42(3):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903015.htm

    Wang Y Q, Hu Z W, Shi Y J, et al. Analysis and reflection on snow disaster accidents of steel structures of light-weight buildings with portal frames[J]. China Civil Engineering Journal, 2009, 42(3):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903015.htm
    [5]
    蓝声宁, 钟新谷.湘潭轻型钢结构厂房雪灾受损分析与思考[J].土木工程学报, 2009, 42(3):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903016.htm

    Lan S N, Zhong X G. Damage diagnoses and lessons learnt from the failure of light-steel structure by heavy snow in Xiangtan[J]. China Civil Engineering Journal, 2009, 42(3):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903016.htm
    [6]
    周昌农.南方雪灾中轻钢结构房屋灾情调查及原因分析[J].城市建设, 2009, 32:286-287. http://d.wanfangdata.com.cn/Periodical/csjsysywd200932189

    Zhou C N. Damage diagnoses and lessons learnt from the failure of light-steel structure by heavy snow in South China[J]. Chengshi Jianshe Yu Shangye Wangdian, 2009, 32(46):286-287. http://d.wanfangdata.com.cn/Periodical/csjsysywd200932189
    [7]
    张德海, 南波, 舒铮.雪灾后某网架破坏分析及加固[J].沈阳建筑大学学报(自然科学版), 2010, 26(1):62-67. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201001011.htm

    Zhang D H, Nan B, Shu Z. Destroying analysis and reinforcement research on space truss structure after snowstorms[J]. Journal of shenyang Jianzhu University(Natural Science), 2010, 26(1):62-67. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201001011.htm
    [8]
    顾明, 黄友钦, 赵明伟.风雪共同作用下门式刚架厂房的动力稳定性[J].同济大学学报, 2011, 39(9):1266-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201109004.htm

    Gu M, Huang Y Q, Zhao M W. Dynamic instability of light-weight steel structures with portal frames under wind and snow loads[J]. Journal of Tongji University, 2011, 39(9):1266-1272. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201109004.htm
    [9]
    Tsuchiya M, Tomabechi T, Hongoa T, et al. Wind effects on snowdrift on stepped flat roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90:1881-1892. doi: 10.1016/S0167-6105(02)00295-7
    [10]
    Gordon M, Taylor P A. Measurements of blowing snow, Part I:Particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada[J]. Cold Regions Science and Technology, 2009, 55(1):63-74. doi: 10.1016/j.coldregions.2008.05.001
    [11]
    O'Rourke M, Degaetano A, Tokarczyk J D. Analytical simulation of snow drift loading[J]. Journal of Structural Engineering, 2005, 131:660-667. doi: 10.1061/(ASCE)0733-9445(2005)131:4(660)
    [12]
    Tominaga Y, Okaze T, Mochida A. CFD modeling of snowdrift around a building:An overview of models and evaluation of a new approach[J]. Building and Environment, 2011, 46(4):899-910. doi: 10.1016/j.buildenv.2010.10.020
    [13]
    王卫华, 廖海黎, 李明水.基于时变边界屋面积雪分布数值模拟[J].西南交通大学学报, 2013, 48(5):851-967. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201305011.htm

    Wang W H, Liao H L, Li M S. Numerical simulation of wind-induced roof snow distributions based on time variable boundary[J]. Journal of Southwest Jiao-tong University, 2013, 48(5):851-967. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201305011.htm
    [14]
    O'Rourke M, Degaetano A, Tokarczyk J D. Snow drifting transport rates from water flume simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92:1245-1264. doi: 10.1016/j.jweia.2004.08.002
    [15]
    Thiis T K, Barfoed P, Delpech P, et al. Penetration of snow into roof constructions-Wind tunnel testing of different eave cover designs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9-11):1476-1485. doi: 10.1016/j.jweia.2007.02.017
    [16]
    Kimbar G, Flaga A. Wind tunnel tests of snow load redistribution on large span flat roofs[C]. The 13th International Conference on Wind Engineering, Amsterdam, 2011.
    [17]
    王卫华, 廖海黎, 李明水.风致屋面积雪分布风洞试验研究[J].建筑结构学报, 2014, 35(5):143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201405022.htm

    Wang W H, Liao H L, Li M S. Wind tunnel test on wind-induced roof snow distribution[J]. Journal of Building Structures, 2014, 35(5):143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201405022.htm
    [18]
    Zhou X Y, Kang L Y, Yuan X M, et al. Wind tunnel test of snow redistribution on flat roofs[J]. Cold Regions Science and Technology, 2016, 127:49-56. doi: 10.1016/j.coldregions.2016.04.006
    [19]
    中华人民共和国建设部. GB 50009-2012建筑结构荷载规范[S].北京:中国建筑工业出版社, 2012.
    [20]
    Kind R J. Snowdrifting:a review of modeling methods[J]. Cold Regions Science and Technology, 1986, 12(3):217-228. doi: 10.1016/0165-232X(86)90036-4
    [21]
    Beyers J H M, Harms T M. Outdoors modelling of snowdrift at SANAE ⅣResearch Station, Antarctica[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91:551-569. doi: 10.1016/S0167-6105(02)00409-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (153) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return