留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Coanda脉冲射流的D型体主动减阻控制研究

张世雄 白宏磊

张世雄, 白宏磊. 基于Coanda脉冲射流的D型体主动减阻控制研究[J]. 实验流体力学, 2023, 37(4): 126-136 doi: 10.11729/syltlx20230053
引用本文: 张世雄, 白宏磊. 基于Coanda脉冲射流的D型体主动减阻控制研究[J]. 实验流体力学, 2023, 37(4): 126-136 doi: 10.11729/syltlx20230053
ZHANG S X, BAI H L. Active drag reduction for a D-shaped cylinder flow using Coanda pulsation jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 126-136 doi: 10.11729/syltlx20230053
Citation: ZHANG S X, BAI H L. Active drag reduction for a D-shaped cylinder flow using Coanda pulsation jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 126-136 doi: 10.11729/syltlx20230053

基于Coanda脉冲射流的D型体主动减阻控制研究

doi: 10.11729/syltlx20230053
基金项目: 深圳市高校稳定支持重点项目(GXWD20201231165807008,20200830220051001)
详细信息
    作者简介:

    张世雄:(1997—),男,吉林长春人,博士研究生。研究方向:结合机器学习的主动流动控制。通信地址:广东省深圳市光明区中山大学深圳校区理学园西426办公室(518107)。E-mail:zhangshx6@mail2.sysu.edu.cn

    通讯作者:

    E-mail:baihlei3@mail.sysu.edu.cn

  • 中图分类号: O358;O368

Active drag reduction for a D-shaped cylinder flow using Coanda pulsation jets

  • 摘要: D型体是典型钝体之一,其尾缘分离流动及近尾流流动结构与其受到的气动阻力密切相关。本文结合Coanda脉冲射流及遗传算法,对D型体绕流进行主动减阻控制。实验在直流风洞中进行,基于来流速度和D型体高度H的雷诺数为1.8 × 104;Coanda脉冲射流布置于D型体背部上下两侧,控制参数包括射流的驱动压力、频率和占空比,以及背部上下侧射流相位差。遗传算法的目标函数为D型体时均背压,间接反映D型体所受气动阻力。研究结果表明:遗传算法能够帮助确定Coanda脉冲射流的最优控制参数组合(射流驱动压力为1.94 atm,无量纲射流频率为0.27,射流占空比为37%,上下侧射流相位差为136°),使D型体时均背压提升达61%(对应的减阻率约为23%),对应45%的控制效率;在最优控制参数下,D型体近尾流交替脱落的大尺度旋涡被破坏,脱落频率和相位差被改变。
  • 图  1  D型体(对称面视图)、Coanda脉冲射流示意图及背部压力测点

    Figure  1.  Diagram of the D-shaped cylinder with Coanda pulsation jets and distributions of the pressure tabs on the base

    图  2  D型体模型风洞实验现场图片

    Figure  2.  Photo of the experimental setup

    图  3  基于遗传算法的闭环控制流程图

    Figure  3.  Flow chart of the genetic algorithms-based closed-loop control

    图  4  D型体背部压力系数随时间变化曲线

    Figure  4.  Time-histories of the base pressure coefficients of the uncontrolled D-shaped cylinder flow

    图  5  自然流动状态下的D型体近尾流流动结构

    Figure  5.  Smoke-wire flow visualization of the near wake of the uncontrolled D-shaped cylinder flow

    图  6  自然流动状态下的D型体背部压力功率谱密度函数、互谱Cross spectrum和相位差

    Figure  6.  Power spectrum density functions of the base pressure, Cross spectrum, and phase lag in the absence of the pulsation jet control

    图  7  D型体时均背压随驱动压力的变化

    Figure  7.  Variations of the mean base pressure with the driving pressure

    图  8  D型体时均背压随射流频率的变化

    Figure  8.  Variations of the mean base pressure with the jet frequency

    图  9  D型体时均背压随占空比的变化

    Figure  9.  Variations of the mean base pressure with the duty cycle

    图  10  D型体时均背压随相位差的变化

    Figure  10.  Variations of the mean base pressure with the phase lag between the upper and lower jet

    图  11  D型体时均背压随遗传代数的变化情况

    Figure  11.  Variations of the mean base pressure coefficient with the generation of genetic algorithms

    图  12  Coanda 脉冲射流控制参数随遗传代数的变化情况

    Figure  12.  Variations of the control parameters with the generation of genetic algorithms

    图  13  最优控制参数下的D型体背部压力系数时程图

    Figure  13.  Time-histories of base pressure coefficients of the optimal controlled D-shaped cylinder flow

    图  14  最优控制参数下的D型体背部压力功率谱密度函数PSD、互谱Cross spectrum及相位差

    Figure  14.  Power spectrum density functions of the base pressure, Cross spectrum, and phase lag in the presence of the pulsation jet control

    图  15  最优控制参数下的D型体上下侧背压信号相位差

    Figure  15.  The phase lag between the upper and lower base pressure in the presence of the pulsation jet control

    图  16  最优控制参数下的D型体近尾流流动结构

    Figure  16.  Smoke-wire flow visualization of the near wake of the D-shaped cylinder flow in the presence of the pulsation jet control

    图  17  控制效率随射流驱动压力和占空比的变化

    Figure  17.  Variations of the control efficiency with the driving pressure and the duty cycle of jets

    表  1  D型体减阻问题研究进展总结

    Table  1.   Summery of previous study of D-shaped cylinder drag reduction

    第一作者文献发表
    时间
    控制方法Re最大
    减阻率
    Tombazis[3]1997被动控制4.0 × 10414%
    Park[4]2006被动控制4.0 × 10412%
    Thiria[5]2009被动控制5 × 103~5 × 10417.5%
    Gao[7]2016开环控制4.7 × 1045%
    Henning[8]2006闭环控制4.0 × 10410%
    Pastoor[9]2008闭环控制2.3 × 104~7.0 × 10415%
    Oswald[10]2019闭环控制5.4 × 10427%
    Shaqarin[11]2021闭环控制3.45 × 104
    5.50 × 104
    45%
    40%
    下载: 导出CSV

    表  2  遗传算法参数设置

    Table  2.   Genetic algorithm parameters

    参数
    每代种群个体数量20
    遗传代数10
    每代保留最优个体数2
    交叉率0.7
    变异率0.3
    下载: 导出CSV
  • [1] MELIGA P, PUJALS G, SERRE É. Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability[J]. Physics of Fluids, 2012, 24(6): 061701. doi: 10.1063/1.4724211
    [2] PALEI V, SEIFERT A. Effects of periodic excitation on the flow around a D-shaped cylinder at low Reynolds numbers[J]. Flow, Turbulence and Combustion, 2007, 78(3): 409–428. doi: 10.1007/s10494-007-9073-7
    [3] TOMBAZIS N, BEARMAN P W. A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance[J]. Journal of Fluid Mechanics, 1997, 330: 85–112. doi: 10.1017/s0022112096003631
    [4] PARK H, LEE D, JEON W P, et al. Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device[J]. Journal of Fluid Mechanics, 2006, 563: 389. doi: 10.1017/s0022112006001364
    [5] THIRIA B, CADOT O, BEAUDOIN J F. Passive drag control of a blunt trailing edge cylinder[J]. Journal of Fluids and Structures, 2009, 25(5): 766–776. doi: 10.1016/j.jfluidstructs.2008.07.008
    [6] CHOI H, JEON W P, KIM J. Control of flow over a bluff body[J]. Annual Review of Fluid Mechanics, 2008, 40: 113–139. doi: 10.1146/annurev.fluid.39.050905.110149
    [7] GAO N, LI Y Q, BAI H L, et al. Effects of synthetic jets on a D-Shaped cylinder wake at a subcritical Reynolds number[J]. Flow, Turbulence and Combustion, 2016, 97(3): 729–742. doi: 10.1007/s10494-016-9712-y
    [8] HENNING L, KING R. Drag reduction by closed-loop control of a separated flow over a bluff body with a blunt trailing edge[C]//Proceedings of the 44th IEEE Conference on Decision and Control. 2006: 494-499. doi: 10.1109/CDC.2005.1582204
    [9] PASTOOR M, HENNING L, NOACK B R, et al. Feedback shear layer control for bluff body drag reduction[J]. Journal of Fluid Mechanics, 2008, 608: 161–196. doi: 10.1017/s0022112008002073
    [10] OSWALD P, SEMAAN R, NOACK B R. Open- and closed loop control on a D-shaped bluff body equipped with Coanda actuation[C]//Proc of the AIAA Aviation 2019 Forum. 2019: 3601. doi: 10.2514/6.2019-3601
    [11] SHAQARIN T, OSWALD P, NOACK B R, et al. Drag reduction of a D-shaped bluff-body using linear parameter varying control[J]. Physics of Fluids, 2021, 33(7): 077108. doi: 10.1063/5.0058801
    [12] ABRAMSON J, ROGERS E. High-speed characteristics of circulation control airfoils[C]//Proc of the 21st Aerospace Sciences Meeting. 1983: 265. doi: 10.2514/6.1983-265
    [13] 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4): 146–160. doi: 10.3321/j.issn:1000-0992.2005.02.009

    REN F, GAO C Q, TANG H. Machine learning for flow control: applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 146–160. doi: 10.3321/j.issn:1000-0992.2005.02.009
    [14] CHAN C M, BAI H L, HE D Q. Blade shape optimization of the Savonius wind turbine using a genetic algorithm[J]. Applied Energy, 2018, 213: 148–157. doi: 10.1016/j.apenergy.2018.01.029
    [15] QIAO Z X, MINELLI G, NOACK B R, et al. Multi-frequency aerodynamic control of a yawed bluff body optimized with a genetic algorithm[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212: 104600. doi: 10.1016/j.jweia.2021.104600
    [16] SEMAAN R. Shape optimization of active and passive drag-reducing devices on a D-shaped bluff body[M]//New Results in Numerical and Experimental Fluid Mechanics XI. Cham: Springer International Publishing, 2017: 327-336. doi: 10.1007/978-3-319-64519-3_30
    [17] MERCKER E. A blockage correction for automotive testing in a wind tunnel with closed test section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(2-3): 149–167. doi: 10.1016/0167-6105(86)90080-2
    [18] BARROS D, BORÉE J, NOACK B R, et al. Bluff body drag manipulation using pulsed jets and Coanda effect[J]. Journal of Fluid Mechanics, 2016, 805: 422–459. doi: 10.1017/jfm.2016.508
    [19] JUKES T N, CHOI K S. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma[J]. Physics of Fluids, 2009, 21(8): 084103. doi: 10.1063/1.3194307
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  163
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-06-28
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-08-02
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日