留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于合成双射流的襟翼舵效增强技术研究

张鉴源 罗振兵 彭文强 梁睿琦 邓雄 王万波 赵志杰 刘杰夫

张鉴源, 罗振兵, 彭文强, 等. 基于合成双射流的襟翼舵效增强技术研究[J]. 实验流体力学, 2023, 37(4): 76-86 doi: 10.11729/syltlx20230046
引用本文: 张鉴源, 罗振兵, 彭文强, 等. 基于合成双射流的襟翼舵效增强技术研究[J]. 实验流体力学, 2023, 37(4): 76-86 doi: 10.11729/syltlx20230046
ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 doi: 10.11729/syltlx20230046
Citation: ZHANG J Y, LUO Z B, PENG W Q, et al. Investigation on performance enhancement of flap based on dual synthetic jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 76-86 doi: 10.11729/syltlx20230046

基于合成双射流的襟翼舵效增强技术研究

doi: 10.11729/syltlx20230046
基金项目: 国家自然科学基金项目(52075538);湖南省自然科学基金项目(2023JJ30622)
详细信息
    作者简介:

    张鉴源:(1999—),男,四川宜宾人,硕士研究生。研究方向:合成双射流舵效增强技术。通信地址:湖南省长沙市开福区德雅路109号国防科技大学空天科学学院(410073)。E-mail:86617132@qq.com

    通讯作者:

    E-mail:luozhenbing@163.com

  • 中图分类号: V211.7

Investigation on performance enhancement of flap based on dual synthetic jets

  • 摘要: 飞机在起降和大机动过程中,襟翼偏角过大会导致襟翼上方出现流动分离,从而使舵面效率降低甚至失效。为有效解决舵效问题,提出了一种基于合成双射流的襟翼舵效增强技术,针对无缝襟翼,探究了合成双射流不同控制参数对升力、舵效的影响规律。研究结果表明:合成双射流能在襟翼表面形成周期性涡结构,增强边界层底部低速流体与主流的动量交换,提高边界层抗逆压梯度的能力;襟翼处合成双射流可有效提高升力、增强舵效;当合成双射流无量纲驱动频率为3.89、动量系数为3.01 × 10–3时,舵效增强效果最好。此外,还设计、制作了合成双射流激励器与机翼一体化模型,并开展了飞行试验,可实现的滚转角速度达15.69 (°)/s,验证了合成双射流增强舵效的可行性和有效性。
  • 图  1  翼型及DSJA布置方案和结构示意图

    Figure  1.  Scheme of airfoil and DSJA layout

    图  2  计算网格示意图

    Figure  2.  Diagram of computing grid

    图  3  升力系数、阻力系数的数值模拟与试验结果对比

    Figure  3.  Comparison between numerical simulation and test results of lift coefficient and drag coefficient

    图  4  不同驱动频率控制气动系数对比

    Figure  4.  Comparison of aerodynamic coefficients of different driving frequencies

    图  5  不同动量系数控制$C_\mu $气动系数对比

    Figure  5.  Comparison of aerodynamic coefficients of different momentum coefficient

    图  6  不同控制参数的速度云图(α = 4°)

    Figure  6.  Velocity diagram of different control parameters (α = 4°)

    图  7  不同频率下的速度云图及压力系数分布(α = 6°)

    Figure  7.  Velocity nephogram and pressure coefficient distribution at different frequencies (α = 6°)

    图  8  不同动量系数下的速度云图及压力系数分布(α = 4°)

    Figure  8.  Velocity nephogram and pressure coefficient distribution at different momentum coefficient (α = 4°)

    图  9  阵列合成双射流激励器模型

    Figure  9.  The model of array dual synthetic jet actuator

    图  10  无人机示意图和DSJA安装位置示意图

    Figure  10.  Size of flight platform and DSJA installation position

    图  11  左侧DSJA控制效果

    Figure  11.  Control effect of left DSJA

    图  12  施加左侧DSJA控制后的飞行参数

    Figure  12.  Flight parameters after applying left DSJA control

    图  13  右侧DSJA控制效果

    Figure  13.  Control effect of right DSJA

    图  14  施加右侧DSJA控制后的飞行参数变化

    Figure  14.  Flight parameters after applying right DSJA control

    表  1  不同网格下的升、阻力系数

    Table  1.   Lift and drag coefficients with different number of grids

    网格数CLCD
    600001.45890.1449
    800001.51150.1517
    1500001.51190.1527
    下载: 导出CSV
  • [1] HUANG L, MAESTRELLO L, BRYANT T. Separation control over an airfoil at high angles of attack by sound emanating from the surface[C]//Proc of 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. 1987. doi: 10.2514/6.1987-1261
    [2] SERFERT A, BACHAR T, KOSS D, et al. Oscillatory blowing: A tool to delay boundary-layer separation[J]. AIAA Journal, 1993, 31(11): 2052–2060. doi: 10.2514/3.49121
    [3] LATUNIA G P, RONALD D J. Overview of active flow control at NASA Langley Research Center[C]//Proc of Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies. 1998. doi: 10.1117/12.310635
    [4] 焦予秦, 程玉庆, 金承信. 机翼喷流增升机理的风洞试验研究[J]. 实验流体力学, 2008, 22(2): 20–24. doi: 10.3969/j.issn.1672-9897.2008.02.004

    JIAO Y Q, CHENG Y Q, JIN C X. Wind tunnel experimental research on lift-enhancing mechanism of jet on wing of aircraft[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2): 20–24. doi: 10.3969/j.issn.1672-9897.2008.02.004
    [5] 白俊强, 辛亮, 刘南, 等. 分布式零质量射流控制增升装置分离的数值模拟[J]. 西北工业大学学报, 2014, 32(02): 188–194. doi: 10.3969/j.issn.1000-2758.2014.02.006

    BAI J Q, XIN L, LIU N, et al. Numerical simulation of separation control for high lift system using distributed zero-net mass flux jet[J]. Journal of Northwestern Polytechnical University, 2014, 32(02): 188–194. doi: 10.3969/j.issn.1000-2758.2014.02.006
    [6] 王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 37–48.

    WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37–48.
    [7] 史子颉, 许和勇, 郭润杰, 等. 协同射流在垂直尾翼流动控制中的应用研究[J]. 航空工程进展, 2022, 13(01): 28–41. doi: 10.16615/j.cnki.1674-8190.2022.01.03

    SHI Z J, XU H Y, GUO R J, et al. Application research of flow control using co-flow jet on a vertical tail[J]. Advances in Aeronautical Science and Engineering, 2022, 13(01): 28–41. doi: 10.16615/j.cnki.1674-8190.2022.01.03
    [8] SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281–2297. doi: 10.1063/1.869828
    [9] CROOK A, SADRI A, WOOD N. The development and implementation of synthetic jets for the control of separated flow[C]//Proc of Applied Aerodynamics Conference. 1999. doi: 10.2514/6.1999-3176
    [10] RYAN H, YOGEN U, RAJAT M, et al. Formation Criterion for Synthetic Jets[J]. AIAA Journal, 2005, 43(10): 2110–2116. doi: 10.2514/1.12033
    [11] KONDOR S, AMITAY M, PAREKH D, et al. Active flow control application on a mini ducted fan UAV[C]//Proc of 19th AIAA Applied Aerodynamics Conference. 2001. doi: 10.2514/6.2001-2440
    [12] AMITAY M, PITT D, GLEZER A. Separation control in duct flows[J]. Journal of Aircraft, 2002, 39(4): 616–620. doi: 10.2514/2.2973
    [13] RATHAY N W, BOUCHER M J, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators: no sideslip[C]//Proc of AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-71
    [14] RATHAY N W, BOUCHER M J, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators: non-zero sideslip[C]//Proc of AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-2657
    [15] RATHAY N W, BOUCHER M J, AMITAY M, et al. Application of synthetic jets to enhance the performance of a vertical tail[J]. SAE International Journal of Aerospace, 2013, 6(1): 169–179. doi: 10.4271/2013-01-2284
    [16] BRANT H M, BRIAN R S, DAVID M, et al. Synthetic jet flow separation control for thin wing fighter aircraft[C]//Proc of 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forumand Aerospace Exposition (Disc 1). 2009. doi: 10.2514/10.2514/6.2009-885
    [17] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 湖南: 国防科学技术大学, 2006.

    LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D]. Hunan: National University of Defense Technology, 2006.
    [18] LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal, 2006, 44(10): 2418–2420. doi: 10.2514/1.20747
    [19] LUO Z B, XIA Z X, XIE Y G. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics, 2007, 20(3): 193–201. doi: 10.1016/S1000-9361(07)60032-6
    [20] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264.

    LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264.
    [21] 王林. 合成双射流激励器流场特性及其控制机翼分离流动研究[D]. 湖南: 国防科学技术大学, 2009.

    WANG L. Flow characteristics of dual synthetic jets actuators and its application on an airfoil separate control[D]. Hunan: National University of Defense Technology, 2009.
    [22] 李玉杰. 基于合成双射流的机翼分离流控制及结冰控制研究[D]. 湖南: 国防科学技术大学, 2015.

    LI Y J. Research on airfoil separate flow control and airfoil icing control using dual synthetic jet actuator[D]. Hunan: National University of Defense Technology, 2015.
    [23] 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3): 817–825.

    LI Y J, LUO Z B, DENG X, et al. Experiment investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jets actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817–825.
    [24] SHAHRABI A F. The control of flow separation: Study of optimal open loop parameters[J]. Physics of Fluids, 2019, 31(3): 035104. doi: 10.1063/1.5082945
    [25] AHMADI G, MARZOCCA P, JHA R, et al. Active flow control of lifting surface with flap-current activities and future directions[R]. NASA/CP—2010-216112, 2010.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  39
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-06-16
  • 录用日期:  2023-07-05
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日