留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贴壁二维方柱绕流对壁面摩擦应力的影响

张之豪 傅奇星 王庆洋 徐胜金

张之豪, 傅奇星, 王庆洋, 等. 贴壁二维方柱绕流对壁面摩擦应力的影响[J]. 实验流体力学, 2023, 37(4): 18-28 doi: 10.11729/syltlx20230035
引用本文: 张之豪, 傅奇星, 王庆洋, 等. 贴壁二维方柱绕流对壁面摩擦应力的影响[J]. 实验流体力学, 2023, 37(4): 18-28 doi: 10.11729/syltlx20230035
ZHANG Z H, FU Q X, WANG Q Y, et al. Effect of flow around a wall-mounted 2D square cylinder on WSS in a TBL[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 18-28 doi: 10.11729/syltlx20230035
Citation: ZHANG Z H, FU Q X, WANG Q Y, et al. Effect of flow around a wall-mounted 2D square cylinder on WSS in a TBL[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 18-28 doi: 10.11729/syltlx20230035

贴壁二维方柱绕流对壁面摩擦应力的影响

doi: 10.11729/syltlx20230035
基金项目: 国家重点研发计划项目(2022YFE0208000);工业和信息化部高技术船舶科研项目(工信部装函[2019]360)
详细信息
    作者简介:

    张之豪:(1993—),男,辽宁大连人,博士研究生。研究方向:风洞多物理场耦合测试技术,汽车空气动力学。通信地址:北京市海淀区清华大学蒙民伟科技大楼北楼N708A(100084)。E-mail:zzh6230@163.com

    通讯作者:

    E-mail:xu_shengjin@tsinghua.edu.cn

  • 中图分类号: O368

Effect of flow around a wall-mounted 2D square cylinder on WSS in a TBL

  • 摘要: 利用TR–PIV与平行双丝热线,对平板边界层内的贴壁二维方柱绕流流场和壁面摩擦应力的关联进行了实验研究。主要关注方柱下游大尺度流动结构的运动对近壁面流向平均速度零点处摩擦应力的影响(基于方柱宽度与来流风速定义的雷诺数固定为1.1 × 104)。研究表明,贴壁二维方柱绕流产生了2种典型的流动结构:一为向壁面靠近并接触壁面的近壁流动结构,本文称“I涡”;一为平行壁面沿流向运动的流动结构,本文称“Ⅱ涡”。Ⅰ涡、Ⅱ涡的出现改变了壁面附近流动速度的大小和方向,影响了测点壁面摩擦应力:增大了流向速度梯度,导致摩擦应力陡增;减小了流向速度梯度,导致摩擦应力锐减;改变了摩擦应力方向。本文研究结果可为理解表面冲蚀、污染物聚集、近壁面湍流耗散等问题的机理提供参考。
  • 图  1  平板及贴壁二维方柱示意图

    Figure  1.  Diagram of flat plate and wall mounted 2D square cylinder

    图  2  平板湍流边界层流向平均速度剖面

    Figure  2.  Profile of time-averaged streamwise velocity of flat plate TBL

    图  3  贴壁二维方柱下游流场PIV测量示意图

    Figure  3.  Diagram of PIV measurement of flow field downstream of the 2D wall-mounted square cylinder

    图  4  摩擦应力测量原理示意图

    Figure  4.  Principle of wall shear stress measurement

    图  5  动态摩擦应力方向判断示意图

    Figure  5.  Diagram of dynamic shear stress direction judgment

    图  6  平行双丝热线标定结果

    Figure  6.  Calibration curves of parallel double hot wire

    图  7  不同雷诺数下平板湍流边界层平均摩擦应力测量结果

    Figure  7.  Results of time-averaged shear stress in flat plate TBL at different Reynolds numbers

    图  8  贴壁二维方柱下游平板摩擦应力测量示意图

    Figure  8.  Diagram of WSS measurement downstream of the wall-mounted 2D square cylinder

    图  9  贴壁二维方柱下游流场统计特征量分布云图

    Figure  9.  Contour of statistical values of flow field downstream of the wall-mounted 2D square cylinder

    图  10  x/D = 7处流动雷诺剪应力沿法向分布

    Figure  10.  Distribution of Reynolds shear stress of flow along normal direction at x/D = 7

    图  11  贴壁二维方柱下游流动结构运动过程,4图为连续时间序列,时间差1 ms

    Figure  11.  Motion process of flow structure downstream of the wall mounted 2D square cylinder, where the four figures are continuous time series with interval of 1 ms

    图  12  贴壁二维方柱下游流动结构运动过程,4图为连续时间序列,时间差2 ms

    Figure  12.  Motion process of flow structure downstream of the wall mounted 2D square cylinder, where the four figures are continuous time series with interval of 2 ms

    图  13  流动结构分裂过程中的涡旋强度等值线图

    Figure  13.  Vorticity intensity contour of flow structure during splitting

    图  14  贴壁二维方柱下游壁面摩擦应力统计值沿流向分布

    Figure  14.  Distribution of statistical value of WSS along the flow direction downstream of the wall-mounted 2D square cylinder

    图  15  贴壁二维方柱下游某些时间段内的瞬时流场

    Figure  15.  Instantaneous flow field downstream of wall-mounted 2D square cylinder during certain time periods

    图  16  壁面摩擦应力随时间变化曲线(x/D = 7)

    Figure  16.  Curve between WSS and time (x/D = 7)

  • [1] WANG Q Y, XU S J, GAN L, et al. Scaling of the time-mean characteristics in the polygonal cylinder near-wake[J]. Experiments in Fluids, 2019, 60(12): 181. doi: 10.1007/s00348-019-2835-x
    [2] XU S J, ZHANG W G, GAN L, et al. Experimental study of flow around polygonal cylinders[J]. Journal of Fluid Mechanics, 2017, 812: 251–278. doi: 10.1017/jfm.2016.801
    [3] DUAN F, WANG J J. Fluid-structure-sound interaction in noise reduction of a circular cylinder with flexible splitter plate[J]. Journal of Fluid Mechanics, 2021, 920: A6. doi: 10.1017/jfm.2021.403
    [4] BAO Y, TAO J. The passive control of wake flow behind a circular cylinder by parallel dual plates[J]. Journal of Fluids and Structures, 2013, 37: 201–219. doi: 10.1016/j.jfluidstructs.2012.11.002
    [5] CASTRO I P. Relaxing wakes behind surface-mounted obstacles in rough wall boundary layers[J]. Journal of Fluid Mechanics, 1979, 93(4): 631–659. doi: 10.1017/s0022112079001968
    [6] LIU Y Z, KE F, SUNG H J. Unsteady separated and reattaching turbulent flow over a two-dimensional square rib[J]. Journal of Fluids and Structures, 2008, 24(3): 366–381. doi: 10.1016/j.jfluidstructs.2007.08.009
    [7] ACHARYA S, DUTTA S, MYRUM T A, et al. Turbulent flow past a surface-mounted two-dimensional rib[J]. Journal of Fluids Engineering, 1994, 116(2): 238–246. doi: 10.1115/1.2910261
    [8] AHMAD TAUQEER M, LI Z, ONG M C. Numerical simulation of flow around different wall-mounted struc-tures[J]. Ships and Offshore Structures, 2017, 12(8): 1109–1116. doi: 10.1080/17445302.2017.1316557
    [9] PANIGRAHI P K, ACHARYA S. Spectral characteristics of separated flow behind a surface mounted square rib[C]//Proc of the 27th Fluid Dynamics Conference, AIAA. 1996. doi: 10.2514/6.1996-1931
    [10] PANIGRAHI P K, ACHARYA S. Excited turbulent flow behind a square rib[J]. Journal of Fluids and Structures, 2005, 20(2): 235–253. doi: 10.1016/j.jfluidstructs.2004.10.004
    [11] SHAH M K, TACHIE M F. Flow relaxation past a transverse square rib in pressure gradients[J]. AIAA Journal, 2008, 46(7): 1849–1863. doi: 10.2514/1.35528
    [12] GU H L, LIU M H, LI X L, et al. The effect of a low-frequency structure on passive scalar transport in the flow over a surface-mounted rib[J]. Flow, Turbulence and Combustion, 2018, 101(3): 719–740. doi: 10.1007/s10494-018-9929-z
    [13] SHI L L, LIU Y Z, WAN J J. TR-PIV measurement of separated and reattaching turbulent flow over a surface-mounted square cylinder[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 421–428. doi: 10.1007/s12206-009-1104-y
    [14] NAGIB H M, CHAUHAN K A, MONKEWITZ P A. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1852): 755–770. doi: 10.1098/rsta.2006.1948
    [15] BILONOGA Y, MAKSYSKO O. Specific features of heat exchangers calculation considering the laminar boundary layer, the transitional and turbulent thermal conductivity of heat carriers[J]. International Journal of Heat and Technology, 2018, 36(1): 11–20. doi: 10.18280/ijht.360102
    [16] 万津津, 施鎏鎏, 余俊, 等. 贴壁方柱湍流场TR-PIV实验研究[J]. 实验流体力学, 2009, 23(2): 31–35. doi: 10.3969/j.issn.1672-9897.2009.02.007

    WAN J J, SHI L L, YU J, et al. TR-PIV measurement of the flow past a square cylinder flush-mounted on the wall[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 31–35. doi: 10.3969/j.issn.1672-9897.2009.02.007
    [17] LUMLEY J L. The structure of inhomogeneous turbulent flows[M]//YAGLAM A M, TARTARSKY V I. Atmospheric turbulence and radio wave propagation. Moscow: Nauka Press, 1967: 166-178.
    [18] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
    [19] MEYER K E, PEDERSEN J M, ÖZCAN O. A turbulent jet in crossflow analysed with proper orthogonal decomposi-tion[J]. Journal of Fluid Mechanics, 2007, 583: 199–227. doi: 10.1017/s0022112007006143
    [20] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x
    [21] 许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45(1): 201504. doi: 10.6052/1000-0992-15-006

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45(1): 201504. doi: 10.6052/1000-0992-15-006
  • 加载中
图(16)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  93
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-06-28
  • 录用日期:  2023-07-03
  • 网络出版日期:  2023-08-04
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日