留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据同化的气动压力稀疏重构方法

黄俊 郭雨欣 冀晶晶 黄永安

黄俊, 郭雨欣, 冀晶晶, 等. 基于数据同化的气动压力稀疏重构方法[J]. 实验流体力学, 2023, 37(5): 9-17 doi: 10.11729/syltlx20230021
引用本文: 黄俊, 郭雨欣, 冀晶晶, 等. 基于数据同化的气动压力稀疏重构方法[J]. 实验流体力学, 2023, 37(5): 9-17 doi: 10.11729/syltlx20230021
HUANG J, GUO Y X, JI J J, et al. Aerodynamic pressure field reconstruction from sparse points using data assimilation method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 9-17 doi: 10.11729/syltlx20230021
Citation: HUANG J, GUO Y X, JI J J, et al. Aerodynamic pressure field reconstruction from sparse points using data assimilation method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 9-17 doi: 10.11729/syltlx20230021

基于数据同化的气动压力稀疏重构方法

doi: 10.11729/syltlx20230021
基金项目: 国家重点研发计划项目(2020YFA0405700);国家自然科学基金项目(52175510);广东华中科技大学工业技术研究院、广东省制造装备数字化重点实验室项目 (2020B1212060014)
详细信息
    作者简介:

    黄俊:(1999—),男,江西丰城人,硕士研究生。研究方向:数据同化,流场重构。通信地址:湖北省武汉市洪山区珞喻路1037华中科技大学机械科学与工程学院先进制造大楼东楼(430074) E-mail:m202170527@hust.edu.cn

    通讯作者:

    E-mail:jijingjing@hust.edu.cn

    yahuang@hust.edu.cn

  • 中图分类号: V211.3

Aerodynamic pressure field reconstruction from sparse points using data assimilation method

  • 摘要: 风洞实验中获取模型高精度压力分布至关重要,但现有测量方法仍然存在一些缺陷。为获得风洞模型的全域压力分布,本文通过集合变换卡尔曼滤波(ETKF)对风洞实验的稀疏实测数据和数值计算数据进行同化,实现了基于模型物面有限测点的全空间流场高精度重构。分别使用二维翼型RAE 2822和NACA 0012进行实验验证,RAE 2822的压力稀疏重构结果比线性理论修正更加接近实测结果,此效果在激波位置体现得尤其明显,压力系数的预测误差降低了约3%,使用ETKF修正后的迎角及马赫数集合均值计算得到的机翼升力系数和力矩系数与实验值的误差均小于1%;NACA 0012实验面向风洞测量的全场感知应用,探讨了基于少量测点进行压力重构的可行性。实验结果表明:采用机翼物面6个测点重构的压力系数,相对误差可达2.42%,且同化效果与数据点位置密切相关。
  • 图  1  ETKF流程图

    Figure  1.  The flowchart of ETKF

    图  2  RAE 2822翼型网格

    Figure  2.  Mesh of RAE 2822 airfoil

    图  3  集合成员迎角在ETKF同化前后的分布

    Figure  3.  Distribution of ensemble angel of attack before and after ETKF assimilation

    图  4  集合成员马赫数在ETKF前后的分布

    Figure  4.  Distribution of ensemble Mach number before and after ETKF assimilation

    图  5  集合的迎角及马赫数均值随迭代过程的变化

    Figure  5.  Mean of angle of attack and Mach number changes with iterations

    图  6  ρuvCp的MSE随迭代过程的变化

    Figure  6.  MSE of ρ, u, v and Cp changes with iterations

    图  7  ETKF同化后的压力系数曲线与线性理论修正曲线对比

    Figure  7.  Comparison of the pressure coefficient curve after assimilation of ETKF with the linear theory correction

    图  8  激波位置的压力系数对比

    Figure  8.  Comparison of pressure coefficient at shock position

    图  9  NACA 0012翼型网格

    Figure  9.  Mesh of NACA 0012 airfoil

    图  10  NACA 0012实验测点位置及序号

    Figure  10.  Test point location and serial number of NACA 0012

    图  11  NACA 0012的ETKF同化结果与实验值的对比

    Figure  11.  Comparison of ETKF assimilation results with experimental values in NACA 0012

    表  1  RAE 2822 网格质量及节点数量

    Table  1.   Quality and node number of RAE 2822 mesh

    单元质量最小值 网格节点数量 第一层网格高度/m
    0.944177429 4.2 × 10−6
    下载: 导出CSV

    表  2  ETKF前后集合成员迎角、马赫数的均值及方差

    Table  2.   Mean and variance of ensemble angle of attack and Mach number before and after ETKF

    迎角马赫数
    初始均值2.310°0.729
    ETKF后均值2.434°0.7328
    初始方差3.192 × 10−22.770 × 10−4
    ETKF后方差1.039 × 10−32.770 × 10−7
    下载: 导出CSV

    表  3  RAE 2822 case 6边界条件

    Table  3.   Boundary condition of RAE 2822 case 6

    迎角/(°)马赫数雷诺数
    原始条件2.920.7256.5 × 106
    线性理论2.310.7296.5 × 106
    ETKF2.430.7336.5 × 106
    下载: 导出CSV

    表  4  ETKF同化和线性理论修正后CLCm、激波位置Cp平均相对误差与实验值的对比

    Table  4.   Comparison of CL, Cm and Cp average relative error near the shock wave position between ETKF, linear theory and experiment

    Cp平均相对误差 CL CL误差 Cm Cm误差
    实验值 0.7430 −0.0950
    ETKF5.741%0.73790.67% −0.09410.95%
    线性理论8.881%0.71204.17% −0.0918 3.37%
    下载: 导出CSV

    表  5  NACA0012 网格质量及节点数量

    Table  5.   Quality and node number of NACA 0012 mesh

    最小单元 节点数量 第一层网格高度/m
    0.881832050 1.0 × 10−5
    下载: 导出CSV

    表  6  4组实验的压力测点序号及迭代次数

    Table  6.   The number of pressure measuring points and iteration times of 4 groups of experiments

    使用的压力测点序号迭代次数
    同化实验11,2,3,4,5,63
    同化实验27,8,9,10,11,123
    同化实验31,5,9,13,17,213
    同化实验41~44(所有测点)4
    下载: 导出CSV

    表  7  4组实验ETKF后的迎角、马赫数及压力系数平均相对误差

    Table  7.   Angle of attack, Mach number and pressure coefficient average relative error after ETKF in 4 groups of experiments

    迎角/(°)马赫数压力系数平均相对误差
    同化实验13.39320.38842.42%
    同化实验23.72860.39375.74%
    同化实验33.53400.39283.77%
    同化实验43.41590.31311.05%
    未同化实验4.02080.40228.72%
    下载: 导出CSV
  • [1] TEDUKA N, KAMEDA M, ASAI K, et al. Adsorptive pressure-sensitive coatings for unsteady flow measurements[J]. Transactions of the Japan Society of Mechanical Engineers, Series B, 2002, 68(669): 1391–1399. doi: 10.1299/kikaib.68.1391
    [2] 李峰, 王洪博. 风洞分布测压试验校准技术发展现状[J]. 计测技术, 2020, 40(1): 1–7. doi: 10.11823/j.issn.1674-5795.2020.01.01

    LI F, WANG H B. Overview of calibration technology for wind tunnel distribution pressure test[J]. Metrology & Measurement Technology, 2020, 40(1): 1–7. doi: 10.11823/j.issn.1674-5795.2020.01.01
    [3] XIONG W N, ZHU C, GUO D L, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550. doi: 10.1016/j.nanoen.2021.106550
    [4] 郭栋梁, 侯超, 朱臣, 等. 飞行器表面气动载荷的柔性智能蒙皮多参量测量[J]. 实验流体力学, 2022, 36(2): 146–154. doi: 10.11729/syltlx20210115

    GUO D L, HOU C, ZHU C, et al. Multi-parameter measurement of aerodynamic load via flexible sensing skin[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 146–154. doi: 10.11729/syltlx20210115
    [5] VAMSI KRISHNA C, WANG M Y, HEMATI M S, et al. Reconstructing the time evolution of wall-bounded turbulent flows from non-time-resolved PIV measurements[J]. Physical Review Fluids, 2020, 5(5): 054604. doi: 10.1103/physrevfluids.5.054604
    [6] CALLAHAM J L, MAEDA K, BRUNTON S L. Robust flow reconstruction from limited measurements via sparse representation[J]. Physical Review Fluids, 2019, 4(10): 103907. doi: 10.1103/physrevfluids.4.103907
    [7] SUN L, WANG J X. Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data[J]. Theoretical and Applied Mechanics Letters, 2020, 10(3): 161–169. doi: 10.1016/j.taml.2020.01.031
    [8] 李静, 张伟伟. 基于Gappy POD的流场数据填补方法[J]. 气体物理, 2020, 5(4): 1–10. doi: 10.19527/j.cnki.2096-1642.0791

    LI J, ZHANG W W. Gappy proper orthogonal decomposition for flow data reconstruction[J]. Physics of Gases, 2020, 5(4): 1–10. doi: 10.19527/j.cnki.2096-1642.0791
    [9] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 020891. doi: 10.7527/S1000-6893.2016.0311

    ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891. doi: 10.7527/S1000-6893.2016.0311
    [10] GARNER H C, ROGERS E W, ACUM W E, et al. Subsonic wind tunnel wall corrections[R]. AD0657092, 1966.
    [11] CARRASSI A, BOCQUET M, BERTINO L, et al. Data assimilation in the geosciences: an overview of methods, issues, and perspectives[J]. WIREs Climate Change, 2018, 9(5): e535. doi: 10.1002/wcc.535
    [12] CHANDRAMOULI P, MEMIN E, HEITZ D. 4D large scale variational data assimilation of a turbulent flow with a dynamics error model[J]. Journal of Computational Physics, 2020, 412: 109446. doi: 10.1016/j.jcp.2020.109446
    [13] BELLIGOLI Z, DWIGHT R, EITELBERG G. Assessment of a data assimilation technique for wind tunnel wall interference corrections[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0939. doi: 10.2514/6.2019-0939
    [14] LI Q, LI R Y, JI K F, et al. Kalman filter and its application[C]//Proc of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS). 2016: 74-77. doi: 10.1109/ICINIS.2015.35
    [15] NERGER L, JANJIĆ T, SCHRÖTER J, et al. A unification of ensemble square root Kalman filters[J]. Monthly Weather Review, 2012, 140(7): 2335–2345. doi: 10.1175/mwr-d-11-00102.1
    [16] BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420–436. doi:10.1175/1520-0493(2001)129<0420:aswtet>2.0.co;2
    [17] LE PROVOST M, ELDREDGE J D. Ensemble Kalman filter for vortex models of disturbed aerodynamic flows[J]. Physical Review Fluids, 2021, 6(5): 050506. doi: 10.1103/physrevfluids.6.050506
    [18] KATO H, YOSHIZAWA A, UENO G, et al. A data assimilation methodology for reconstructing turbulent flows around aircraft[J]. Journal of Computational Physics, 2015, 283: 559–581. doi: 10.1016/j.jcp.2014.12.013
    [19] LI T X, HE C X, WEN X, et al. Data assimilation of rotor flow at hovering state using ensemble Kalman filter[J]. Journal of Visualization, 2023: 1–25. doi: 10.1007/s12650-022-00906-y
    [20] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55–61. doi: 10.1080/00401706.2000.10485979
    [21] HAASE W, BRADSMA F, ELSHOLZ E, et al. EUROVAL-An European initiative on validation of CFD codes[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 1993, 42: 123-184. doi: 10.1007/978-3-663-14131-0.
    [22] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822: pressure distributions, and boundary layer and wake measurements[C]//Proc of the AGARD Report AR. 1979.
    [23] LADSON C L, HILL A S, JOHNSON W G. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel[R]. NASA-TM-100526, 1987.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  198
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-03-22
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日