留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空管道列车动态运行气动特性研究

宋嘉源 李田 张继业

宋嘉源, 李田, 张继业. 真空管道列车动态运行气动特性研究[J]. 实验流体力学, 2023, 37(1): 64-71 doi: 10.11729/syltlx20220121
引用本文: 宋嘉源, 李田, 张继业. 真空管道列车动态运行气动特性研究[J]. 实验流体力学, 2023, 37(1): 64-71 doi: 10.11729/syltlx20220121
SONG J Y, LI T, ZHANG J Y. Research on aerodynamic characteristics of evacuated tube train in dynamic operation[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 64-71 doi: 10.11729/syltlx20220121
Citation: SONG J Y, LI T, ZHANG J Y. Research on aerodynamic characteristics of evacuated tube train in dynamic operation[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 64-71 doi: 10.11729/syltlx20220121

真空管道列车动态运行气动特性研究

doi: 10.11729/syltlx20220121
基金项目: 国家自然科学基金(12172308,52078433);中央高校基本科研业务费(2682021ZTPY124)
详细信息
    作者简介:

    宋嘉源:(1999—),男,四川乐山人,硕士研究生。研究方向:列车空气动力学。通信地址:四川省成都市金牛区二环路北一段111号西南交通大学九里校区牵引动力国家重点实验室(610031)。E-mail:songjy@my.swjtu.edu.cn

    通讯作者:

    E-mail:litian2008@home.swjtu.edu.cn

  • 中图分类号: U237

Research on aerodynamic characteristics of evacuated tube train in dynamic operation

  • 摘要: 研究真空管道列车瞬态气动特性能为建设多态耦合真空管道列车实验平台提供参考。建立了三维真空管道列车模型,采用剪切应力运输(Shear Stress Transport, SST) kω湍流模型求解流场,通过对比不同时刻列车匀速和加速时的气动阻力、压力分布及流场特性,揭示了加速度对真空管道列车气动阻力的影响机制。研究结果表明:头车和尾车气动阻力主要受管道壅塞和尾部激波脱离的影响,在非壅塞状态下,尾车阻力增长缓慢而头车阻力基本不变。相比于加速工况,匀速工况启动速度较大,斜激波反射造成列车表面压力波动,波动幅值随时间逐渐降低。加速时头车压缩前方空气过程较缓慢,前驱激波强度较低,头车气动阻力和周围压力的变化滞后于列车运行速度的变化,且加速度越小滞后效果越明显。在匀速运行阶段,壅塞段和尾部激波段长度与运行时间成正比。
  • 图  1  等熵极限与激波脱离极限

    Figure  1.  Isentropic limit and shock detachment limit

    图  2  不同计算工况的速度和距离时程曲线

    Figure  2.  Curve of speed and distance under different cases

    图  3  几何模型

    Figure  3.  Geometric model

    图  4  计算域与边界条件

    Figure  4.  Calculation domain and boundary conditions

    图  5  计算域网格划分

    Figure  5.  Mesh of computational domain

    图  6  激波管装置示意图[21]

    Figure  6.  Schematic diagram of shock tube[21]

    图  7  0.001 s时刻激波管内压力分布

    Figure  7.  Pressure distribution in shock tube at 0.001 s

    图  8  Trimpi实验[21]与数值计算结果对比

    Figure  8.  Comparison of Trimpi experiment and simulation[21]

    图  9  工况2气动阻力时程曲线

    Figure  9.  Curve of aerodynamic resistance under case 2

    图  10  工况2下0~0.5 s列车周围压力分布

    Figure  10.  Pressure distribution around the train under case 2 of 0~0.5 s

    图  11  工况2不同时刻列车表面压力分布

    Figure  11.  Pressure distribution of surface at different times under case 2

    图  12  工况2下0.6~1.2 s列车周围压力分布

    Figure  12.  Pressure distribution around the train under case 2 of 0.6~1.2 s

    图  13  工况2下1.5 s时刻管道内速度矢量图

    Figure  13.  Velocity vector diagram in the tube under case 2 at 1.5 s

    图  14  工况3列车气动阻力时程曲线

    Figure  14.  Curve of aerodynamic resistance under case 3

    图  15  工况3不同时刻列车表面压力

    Figure  15.  Pressure distribution of surface at different times under case 3

    图  16  工况3不同时刻列车周围压力分布

    Figure  16.  Pressure distribution around the train at different times under case 3

    图  17  工况3不同时刻管道内压力分布

    Figure  17.  Pressure distribution in tube at different times under case 3

    图  18  工况2不同时刻管道内压力分布

    Figure  18.  Pressure distribution in tube at different times under case 2

    图  19  工况1不同时刻管道内压力分布

    Figure  19.  Pressure distribution in tube at different times under case 1

  • [1] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [2] MUSK E. Hyperloop Alpha[JB/OL]. [2022-10-27]. https://www.tesla.com.
    [3] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [4] JANG K S, LE T T G, KIM J, et al. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system. Aerospace Science and Technology, 2021, 117, 106970. doi: 10.1016/j.ast.2021.106970
    [5] NIU J Q, SUI Y, YU Q J, et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100–111. doi: 10.1016/j.jweia.2019.04.001
    [6] NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
    [7] KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
    [8] CHOI J K, KIM K H. Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels[J]. Tunnelling and Underground Space Technology, 2014, 41: 62–73. doi: 10.1016/j.tust.2013.11.012
    [9] ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61–70. doi: 10.1016/j.jweia.2019.04.003
    [10] 周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [11] 周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190

    ZHOU P, LI T, ZHANG J Y, et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190
    [12] 宋嘉源, 李田, 张晓涵, 等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227

    SONG J Y, LI T, ZHANG X H, et al. Research on aerodynamic and thermal characteristics of subsonic evacuated tube maglev system[J]. Acta Aerodynamica Sinica, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227
    [13] 胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodynamica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [14] 胡啸, 马天昊, 王潇飞, 等. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J/OL]. [2022-10-27]. 实验流体力学. http://www.syltlx.com/cn/article/doi/10.11729/syltlx20220084.

    HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport[J/OL]. [2022-10-27]. Journal of Experiments in Fluid Mechanics. http://www.syltlx.com/cn/article/doi/10.11729/syltlx20220084.doi: 10.11729/syltlx20220084
    [15] HOU Z H, ZHU Y J, BO J L, et al. A quasi-one-dimensional study on global characteristics of tube train flows[J]. Physics of Fluids, 2022, 34(2): 026104. doi: 10.1063/5.0080544
    [16] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182

    ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
    [17] LI T, SONG J Y, ZHANG X H, et al. Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(15): 8261–8271. doi: 10.1177/09544062221087826
    [18] BI H Q, WANG Z H, WANG H L, et al. Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube[J]. Physics of Fluids, 2022, 34(9): 096111. doi: 10.1063/5.0104819
    [19] 林建忠, 阮晓东, 陈邦国. 流体力学[M]. 2版. 北京: 清华大学出版社, 2013.

    LIN J Z, RUAN X D, CHEN B G. Fluid mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013.
    [20] 吴子牛. 空气动力学[M]. 北京: 清华大学出版社, 2007.

    WU Z N. Aerodynamics[M]. Beijing: Tsinghua University Press, 2007.
    [21] TRIMPI R L, COHEN N B. A theory for predicting the flow of real gases in shock tubes with experimental verification[R]. Technical note 3375, 1955.
  • 加载中
图(19)
计量
  • 文章访问数:  3160
  • HTML全文浏览量:  142
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-11-24
  • 录用日期:  2022-12-09
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日