留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

600 km/h磁浮列车隧道交会车体压力载荷特征研究

魏康 来积伟 梅元贵

魏康, 来积伟, 梅元贵. 600 km/h磁浮列车隧道交会车体压力载荷特征研究[J]. 实验流体力学, 2023, 37(1): 82-90 doi: 10.11729/syltlx20220117
引用本文: 魏康, 来积伟, 梅元贵. 600 km/h磁浮列车隧道交会车体压力载荷特征研究[J]. 实验流体力学, 2023, 37(1): 82-90 doi: 10.11729/syltlx20220117
WEI K, LAI J W, MEI Y G. Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 82-90 doi: 10.11729/syltlx20220117
Citation: WEI K, LAI J W, MEI Y G. Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 82-90 doi: 10.11729/syltlx20220117

600 km/h磁浮列车隧道交会车体压力载荷特征研究

doi: 10.11729/syltlx20220117
基金项目: 国家重点研发计划 (2016YFB1200602-39)
详细信息
    作者简介:

    魏康:(1995—),男,甘肃庆阳人,硕士研究生。研究方向:轨道交通空气动力学及应用。通信地址:甘肃省兰州市安宁区安宁西路88号兰州交通大学甘肃省轨道交通力学应用工程实验室(730070)。E-mail:2211921125@qq.com

    通讯作者:

    E-mail:meiyuangui@163.com

  • 中图分类号: U451+.3;V211.3

Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel

  • 摘要: 随着列车速度的提升,空气动力学效应对车体压力载荷影响愈加严重,且列车隧道交会比单列车通过隧道时的空气动力学效应更加剧烈。为研究磁浮列车隧道交会时的车体压力载荷,采用一维可压缩非定常不等熵流动模型,在论证了研究方法正确性的基础上,分析了车体最大正负压值特征和车体压力最值(最大正负压值和最大压力峰峰值)分布特性,研究了隧道长度、列车速度和阻塞比对车体压力载荷的影响特性。研究结果表明:列车在通过隧道的过程中,车体所承受的最大负压值远大于最大正压值;只有当隧道长度超过一定值时,车体的最大正负压值出现在头尾车;头尾车的压力最值在隧道长度超过2 km以后保持定值,且不同速度下头尾车的最大正压值的定值基本重合,接近于“零”;隧道长度在一定范围内时,车体压力载荷与速度的二次方成正比;车体压力最值随阻塞比增大而增大。研究成果可为车体气动疲劳强度设计提供基础数据。
  • 图  1  单列车通过隧道时的空气流动空间

    Figure  1.  The air flow space when a single train is passing through tunnel

    图  2  列车交会时的空气流动空间

    Figure  2.  The air flow space when trains are crossing in tunnel

    图  3  一维流动模型数值计算结果与动模型试验数据对比

    Figure  3.  Comparison between numerical results of one-dimensional flow model and test data of moving model

    图  4  高速磁浮列车几何模型示意图[14]

    Figure  4.  Geometric models for high-speed maglev train[14]

    图  5  计算域模型[14]

    Figure  5.  Model of computational region[14]

    图  6  计算模型体网格[14]

    Figure  6.  Volume grids of computational mode[14]

    图  7  一维平面波的演化过程[14]

    Figure  7.  Evolution of one-dimensional plane waves[14]

    图  8  列车运行轨迹和压力时间历程曲线

    Figure  8.  Schematic diagram of relationship between train trajectory and pressure time history curve

    图  9  列车通过不同长度隧道时的最大压力之比

    Figure  9.  The ratio of the maximum pressure of a train passing through tunnels of different lengths

    图  10  列车以不同速度通过隧道时的最大压力之比

    Figure  10.  The ratio of the maximum pressure of a train passing through a tunnel at different speeds

    图  11  车体压力最值的分部特性

    Figure  11.  The maximum pressure distribution

    图  12  头车车体压力随隧道长度变化

    Figure  12.  The outside pressure of the head train varies with the length of the tunnel

    图  13  尾车车体压力随隧道长度变化

    Figure  13.  The outside pressure of the tail train varies with the length of the tunnel

    图  14  头尾车车体压力最值与速度拟合曲线

    Figure  14.  Fitting curves of maximum pressure and speed of the head and tail train

    图  15  头尾车的压力最值随阻塞比的变化规律

    Figure  15.  The maximum pressure of the head and tail train varies with the blocking ratio

    表  1  中南大学磁浮隧道列车数据

    Table  1.   Maglev tunnel data and train data of Central South University

    隧道参数列车参数
    横截面积 140 m2 横截面积 11.9 m2
    横截面周长 41.94 m 横截面周长 18.1 m
    长度 318 m 长度 81 m
    进口端局部阻力系数 0.5 车头压力损失系数 0
    壁面沿程摩擦系数 0.005 车尾压力损失系数 0.00871
    下载: 导出CSV

    表  2  最不利隧道长度统计表

    Table  2.   Table of the most unfavorable tunnel lengths

    速度/(km·h−1)最不利隧道长度/m
    头车 尾车
    最大正压值最大负压值最大压力峰峰值 最大正压值最大负压值最大压力峰峰值
    200 750 270 270 270 810 270
    300 570 350 410 310 530 470
    350 490 330 330 350 450 410
    400 410 330 350 370 390 370
    450 390 350 370 410 350 290
    500 350 390 370 390 300 270
    550 350 390 390 270 270 270
    600 310 390 390 290 270 270
    下载: 导出CSV

    表  3  不同隧道长度下头尾车压力最值与列车速度的幂次n的取值

    Table  3.   The value of the power n of the maximum pressure of head and tail train and train speed under different tunnel lengths

    压力幅值隧道长度/mnR2
    最大正压值
    3102.66599.9%
    4102.54199.9%
    5102.22499.9%
    5702.09799.8%
    5902.02299.9%
    6101.88899.8%
    6301.73599.1%
    最大负压值
    3102.54499.2%
    3302.27899.2%
    3502.13399.3%
    3701.94099.1%
    3901.73798.8%
    6300.83393.4%
    下载: 导出CSV

    表  4  头尾车压力最值与阻塞比的幂次n取值

    Table  4.   The value of the power n of maximum pressure of the head and tail train and blocking ratio

    车厢最大正压值 最大负压值 最大压力峰峰值
    nR2 nR2 nR2
    头车 1.14 99.8% 1.23 99.8% 1.21 99.8%
    尾车 0.05 100% 0.99 99.6% 0.92 99.6%
    下载: 导出CSV
  • [1] PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of the art and future potential[J]. International Journal of Vehicle Design, 1983, 3: 308–341.
    [2] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371–414. doi: 10.1146/annurev.fluid.33.1.371
    [3] NIU J Q, SUI Y, YU Q J, et al. Aerodynamics of railway train/tunnel system: a review of recent research[J]. Energy and Built Environment, 2020, 1(4): 351–375. doi: 10.1016/j.enbenv.2020.03.003
    [4] TIELKES T. Aerodynamic aspects of maglev systems[C]// Proc of the 19th international conference on magnetically levitated systems and linear drives. 2006.
    [5] 寺本紀彬, 佐々木, 英夫植田, et al. 山梨リニア実験線のトネルン建設[J]. トンネル·地下, 1992, 12(4): 15–27.
    [6] YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7–12. doi: 10.2219/rtriqr.45.7
    [7] 菅沢正浩, 保坂史郎, 岩本孝昌, et al. 山梨リニア実験線新型車両の走行試験結果概要[C]//鉄道技術連合シンポジウム(j-rail)講演論文集. 2003: 305-308.
    [8] 山崎, 幹男, 若原, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003: 171-189.
    [9] 杉本直, 川崎卓巳, 神岡光浩. 超高速に挑む-山梨実験線リニア車両[J]. 川崎重工技報, 2006(160): 8–15.
    [10] SAITO S, IIDA M, KAJIYAMA H. Numerical simulation of 1-D unsteady compressible flow in railway tunnels[J]. Jour-nal of Environment and Engineering, 2011, 6(4): 723–738. doi: 10.1299/jee.6.723
    [11] HUANG S, LI Z W, YANG M Z. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151–160. doi: 10.1016/j.jweia.2019.02.025
    [12] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.

    MEI Y G, ZHOU C H, XU J L. Aerodynamics of high-speed railway tunnel[M]. Beijing: Science Press, 2009.
    [13] MEI Y G. A generalized numerical simulation method for pressure waves generated by high-speed trains passing through tunnels[J]. Advances in Structural Engineering, 2013, 16(8): 1427–1436. doi: 10.1260/1369-4332.16.8.1427
    [14] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131.

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131.
    [15] 梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78–89. doi: 10.3969/j.issn.1001-4632.2021.06.09

    MEI Y G, ZHANG Z C, DU J, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78–89. doi: 10.3969/j.issn.1001-4632.2021.06.09
    [16] 毕海权, 雷波, 张卫华. TR磁浮列车湍流外流场数值计算[J]. 西南交通大学学报, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002

    BI H Q, LEI B, ZHANG W H. Numerical calculation for turbulent flow around TR maglev train[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002
    [17] 梁习锋, 沈娴雅. 环境风与列车交会耦合作用下磁浮列车横向气动性能[J]. 中南大学学报(自然科学版), 2007, 38(4): 751–757.

    LIANG X F, SHEN X Y. Lateral aerodynamic performances of maglev train when two trains meet with wind blowing[J]. Journal of Central South University (Science and Tech-nology), 2007, 38(4): 751–757.
    [18] 焦齐柱, 肖明清, 周俊超, 等. 基于乘员耳感舒适性的时速600 km磁悬浮单线隧道最优净空面积研究[J]. 铁道科学与工程学报, 2020, 17(12): 2993–3002.

    JIAO Q Z, XIAO M Q, ZHOU J C, et al. Study on the optimal clearance area of a single line maglev tunnel with a speed of 600 km/h based on the ear comfort of passengers[J]. Journal of Railway Science and Engineering, 2020, 17(12): 2993–3002.
    [19] 张志超, 杜健, 赵汗冰, 等. 高速磁浮单线隧道车体压力载荷特征[J]. 铁道科学与工程学报, 2021, 18(1): 21–30. doi: 10.19713/j.cnki.43-1423/u.t20200201

    ZHANG Z C, DU J, ZHAO H B, et al. Pressure load characteristics of high-speed maglev single-track tunnels[J]. Journal of Railway Science and Engineering, 2021, 18(1): 21–30. doi: 10.19713/j.cnki.43-1423/u.t20200201
    [20] 黄莎, 李志伟, 杨明智, 等. 高速磁浮列车通过隧道群时的压力波特性[J]. 中南大学学报(自然科学版), 2022, 53(5): 1770–1781.

    HUANG S, LI Z W, YANG M Z, et al. Pressure wave characteristics of high-speed maglev train passing through tunnel groups[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1770–1781.
    [21] 张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678.

    ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678.
    [22] 李颢豪, 杨明智, 孔学舟. 不同高度声屏障对磁浮列车气动效应影响研究[J]. 铁道科学与工程学报, 2017, 14(4): 819–826. doi: 10.3969/j.issn.1672-7029.2017.04.021

    LI H H, YANG M Z, KONG X Z. Influence of the height of sound barrier on aerodynamic effects of maglev train[J]. Journal of Railway Science and Engineering, 2017, 14(4): 819–826. doi: 10.3969/j.issn.1672-7029.2017.04.021
    [23] 周细赛, 刘堂红, 陈争卫, 等. 头部主型线变化对列车隧道交会气动性能的影响[J]. 中南大学学报(自然科学版), 2018, 49(2): 493–501.

    ZHOU X S, LIU T H, CHEN Z W, et al. Influence of head outlines on aerodynamic effect of two trains intersecting in tunnel[J]. Journal of Central South University (Science and Technology), 2018, 49(2): 493–501.
    [24] 王磊, 骆建军, 李飞龙. 高速列车过双线隧道气动效应及列车风特性[J]. 哈尔滨工业大学学报, 2021, 53(9): 43–52. doi: 10.11918/202011011

    WANG L, LUO J J, LI F L. Aerodynamic effects and train wind characteristics of high-speed train passing through double-track tunnel[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 43–52. doi: 10.11918/202011011
    [25] YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [26] 张雷, 林晓龙, 尹小放, 等. 线间距对400 km/h高速列车隧道交会气动性能的影响[J]. 高速铁路技术, 2021, 12(2): 43–49. doi: 10.12098/j.issn.1674-8247.2021.02.008

    ZHANG L, LIN X L, YIN X F, et al. Influence of distance between centers of tracks on the aerodynamic performance of 400 km/h high-speed trains meeting in tunnels[J]. High Speed Railway Technology, 2021, 12(2): 43–49. doi: 10.12098/j.issn.1674-8247.2021.02.008
    [27] 李艳, 魏德豪, 秦登, 等. 时速400 km+高速列车交会压力波特性研究[J]. 铁道工程学报, 2021, 38(8): 25–29,35. doi: 10.3969/j.issn.1006-2106.2021.08.006

    LI Y, WEI D H, QIN D, et al. Research on the pressure wave characteristics of high-speed trains passing each other at speeds of 400 km/h and above[J]. Journal of Railway Engineering Society, 2021, 38(8): 25–29,35. doi: 10.3969/j.issn.1006-2106.2021.08.006
    [28] 王志钧, 李艳, 魏康, 等. 400 km/h动车组车体压力载荷隧道参数影响特征研究[J]. 高速铁路技术, 2021, 12(5): 46–51,67.

    WANG Z J, LI Y, WEI K, et al. Study on influence of tunnel parameters on pressure load of carbody of 400 km/h EMU[J]. High Speed Railway Technology, 2021, 12(5): 46–51,67.
    [29] 陆意斌, 王田天, 张雷, 等. 时速400 km不同编组列车通过隧道时的气动载荷[J]. 中南大学学报(自然科学版), 2022, 53(5): 1855–1866.

    LU Y B, WANG T T, ZHANG L, et al. Aerodynamic loads of trains with different formations passing through and intersecting in tunnels at 400 km/h[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1855–1866.
    [30] 国家铁路局. 磁浮铁路技术标准: TB 10630—2019[S]. 北京: 中国铁道出版社, 2019.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  3432
  • HTML全文浏览量:  140
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-08
  • 录用日期:  2022-12-12
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日