留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气环境变化对真空管道温度场影响的研究

高超 严日华 武斌 周廷波

高超, 严日华, 武斌, 等. 大气环境变化对真空管道温度场影响的研究[J]. 实验流体力学, 2023, 37(1): 72-81 doi: 10.11729/syltlx20220116
引用本文: 高超, 严日华, 武斌, 等. 大气环境变化对真空管道温度场影响的研究[J]. 实验流体力学, 2023, 37(1): 72-81 doi: 10.11729/syltlx20220116
GAO C, YAN R H, WU B, et al. Study on the influence of atmospheric environment change on the temperature field of vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 72-81 doi: 10.11729/syltlx20220116
Citation: GAO C, YAN R H, WU B, et al. Study on the influence of atmospheric environment change on the temperature field of vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 72-81 doi: 10.11729/syltlx20220116

大气环境变化对真空管道温度场影响的研究

doi: 10.11729/syltlx20220116
基金项目: 国家自然科学基金(12172299,12102359)
详细信息
    作者简介:

    高超:(1960—),男,陕西榆林人,博士,教授,博士生导师。研究方向:空气动力学试验与测量技术,流动控制技术,计算空气动力学及飞行器设计技术。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学航空学院翼型、叶栅空气动力学国家级重点实验室(710072)。E-mail:gaochao@nwpu.edu.cn

    通讯作者:

    E-mail:yanrihua@mail.nwpu.edu.cn

  • 中图分类号: U237

Study on the influence of atmospheric environment change on the temperature field of vacuum tube

  • 摘要: 真空管道内的温度分布直接影响管道内磁浮列车的气动性能及运行安全,研究大气环境对真空管道温度场的影响,对未来真空管道列车运输系统的建设具有重要意义。基于四川省成都市近5年(2017—2021)的气象数据,总结了各季节的太阳辐射强度、空气湿度、大气温度和风速等大气环境参数,建立了真空管道辐射传热数值计算方法,采用DO(Discrete Ordinate)辐射模型研究了太阳辐射对真空管道内气流温度的影响,得到了不同季节、不同真空度下管道内气流温度分布及变化规律。研究表明:在太阳辐射的影响下,真空管道内气流温度提升较大;在相同真空度下,管道内气流温度夏季最高、冬季最低;随着真空度逐渐降低,管道内气流温度逐渐升高,真空度为0.1 atm(约10.1 kPa)时,夏季管道内气流温度最大提升56.60 K。
  • 图  1  真空管道模型示意图

    Figure  1.  Schematic diagram of maglev flight tunnels

    图  2  计算域网格图

    Figure  2.  Grid diagram of calculation area

    图  3  辐射传热和自然对流示意图

    Figure  3.  Schematic diagram of radiation and natural convection

    图  4  对比算例中的管道截面网格图

    Figure  4.  Grid diagram at cross section

    图  5  Case 1的数值计算和试验结果对比图

    Figure  5.  Comparison of numerical calculation and test results in Case 1

    图  6  Case 2的数值计算和试验结果对比图

    Figure  6.  Comparison of numerical calculation and test results in Case 2

    图  7  真空度为1.0 atm时各季节管道中心截面的温度分布

    Figure  7.  Temperature distributions in different seasons when vacuum degree is 1.0 atm

    图  8  真空度为1.0 atm时管道中心截面水平直径方向上的温度分布

    Figure  8.  Temperature distributions along horizontal diameter of the middle plane of tube when vacuum degree is 1.0 atm

    图  9  真空度为1.0 atm时管道中心截面竖直直径方向上的温度分布

    Figure  9.  Temperature distributions along the vertical diameter of the middle plane of tube when vacuum degree is 1.0 atm

    图  10  真空度为0.5 atm时各季节管道中心截面的温度分布

    Figure  10.  Temperature distributions in different seasons when vacuum degree is 0.5 atm

    图  11  真空度为0.5 atm时管道中心截面水平直径方向上的温度分布

    Figure  11.  Temperature distributions along horizontal diameter of the middle plane of tube when vacuum degree is 0.5 atm

    图  12  真空度为0.5 atm时管道中心截面竖直直径方向上的温度分布

    Figure  12.  Temperature distributions along the vertical diameter of the middle plane of tube when vacuum degree is 0.5 atm

    图  13  真空度为0.1 atm时各季节管道中心截面上的温度分布

    Figure  13.  Temperature distributions in different seasons when vacuum degree is 0.1 atm

    图  14  真空度为0.1 atm时管道中心截面水平直径方向上的温度分布

    Figure  14.  Temperature distributions along horizontal diameter of the middle plane of tube when vacuum degree is 0.1 atm

    图  15  真空度为0.1 atm时管道中心截面竖直直径方向上的温度分布

    Figure  15.  Temperature distributions along the vertical diameter of the middle plane of tube when vacuum degree is 0.1 atm

    表  1  成都市各月份气象数据表

    Table  1.   The table of Chengdu monthly aerodynamic data

    季度 月份/月温度/(°)湿度/%平均风速/(km·h−1)
    313.009.3
    418.049.5
    522.0249.4
    625.0758.6
    726.0957.9
    826.5907.6
    922.0507.5
    1018.087.6
    1113.007.7
    128.007.6
    16.007.8
    28.508.6
    下载: 导出CSV

    表  2  成都市四季大气环境变量参数表

    Table  2.   Table of meteorological data of Chengdu in different seasons

    季节平均温度/(°)平均湿度/%平均风速/(km·h−1)
    17.79.39.4
    25.886.78.0
    17.719.37.6
    7.508.0
    下载: 导出CSV

    表  3  各季节管道外壁面换热系数

    Table  3.   Thermal convection coefficient of pipeline wall in different seasons

    季节换热系数/(W·m−2·K−1)
    4.54
    3.98
    3.81
    3.98
    下载: 导出CSV
  • [1] 倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [2] 央视网. 中国新闻: 世界首个电磁橇设施成功运行[Z]. (2022-10-20)[2022-11-01]. https://tv.cctv.com/2022/10/20/VIDEL8dSWULplgfwyAclj1HT221020.shtml.
    [3] 汤友富. 超级高铁发展趋势及关键问题分析[J]. 铁道建筑技术, 2019(4): 1–4. doi: 10.3969/j.issn.1009-4539.2019.04.001

    TANG Y F. Research on the development trend and analysis of key problems of hyperloop[J]. Railway Construc-tion Technology, 2019(4): 1–4. doi: 10.3969/j.issn.1009-4539.2019.04.001
    [4] 金茂菁, 黄玲. 超高速真空管道交通技术发展现状与趋势[J]. 科技中国, 2018(3): 13–15. doi: 10.3969/j.issn.1673-5129.2018.03.004

    JIN M J, HUANG L. Development status and trend of ultra-high speed vacuum pipeline transportation technology[J]. China Scitechnology Business, 2018(3): 13–15. doi: 10.3969/j.issn.1673-5129.2018.03.004
    [5] 黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165

    HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
    [6] 张克锐, 李庆领, 王传伟, 等. 真空管道高速列车气动噪声研究[J]. 真空科学与技术学报, 2019, 39(11): 950–957. doi: 10.13922/j.cnki.cjovst.2019.11.03

    ZHANG K R, LI Q L, WANG C W, et al. Aerodynamic noises of vacuum tube transportation: asimulation and theoretical study[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(11): 950–957. doi: 10.13922/j.cnki.cjovst.2019.11.03
    [7] 刘加利, 张继业, 张卫华. 真空管道高速列车气动噪声源特性分析[J]. 真空科学与技术学报, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14

    LIU J L, ZHANG J Y, ZHANG W H. Simulation of noise source for high speed train in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14
    [8] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [9] 中国空气动力研究与发展中心. 磁浮飞行风洞建设项目建议书[R]. 2019.
    [10] 沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094

    SHEN T, MA Z W, DU X J, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094
    [11] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [12] NØLAND J K. Prospects and challenges of the hyperloop transportation system: a systematic technology review[J]. IEEE Access, 2021, 9: 28439–28458. doi: 10.1109/ACCESS.2021.3057788
    [13] 周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086

    ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086
    [14] 周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190

    ZHOU P, LI T, ZHANG J Y, et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190
    [15] BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodyna-mics, 2020, 2(1): 1–18. doi: 10.1186/s42774-020-00053-8
    [16] 张俊博, 李红梅, 王俊彪, 等. 低真空管道磁悬浮列车温度场数值计算[J]. 真空科学与技术学报, 2021, 41(5): 448–455. doi: 10.13922/j.cnki.cjvst.202010007

    ZHANG J B, LI H M, WANG J B, et al. Numerical analysis of the temperature field of vacuum tube maglev train[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 448–455. doi: 10.13922/j.cnki.cjvst.202010007
    [17] 陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019, 8(2): 109–117. doi: 10.12677/IJM.2019.82013

    CHEN D W, GUO D L. Aerodynamic characteristics of maglev train on low vacuum tube[J]. International Journal of Mechanical Research, 2019, 8(2): 109–117. doi: 10.12677/IJM.2019.82013
    [18] 魏龙涛, 胡站伟, 杨升科, 等. 真空管道列车悬浮电磁铁散热性能研究[J]. 装备环境工程, 2022, 19(6): 141–146. doi: 10.7643/issn.1672-9242.2022.06.020

    WEI L T, HU Z W, YANG S K, et al. Heat dissipation performance of suspension electromagnet in the evacuated tube[J]. Equipment Environmental Engineering, 2022, 19(6): 141–146. doi: 10.7643/issn.1672-9242.2022.06.020
    [19] ZHOU Z W, XIA C, DU X Z, et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids, 2022, 34(6): 066103. doi: 10.1063/5.0090971
    [20] YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92: 108890. doi: 10.1016/j.ijheatfluidflow.2021.108890
    [21] YU Q J, YANG X F, NIU J Q, et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology, 2022, 121: 107367. doi: 10.1016/j.ast.2022.107367
    [22] HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562
    [23] HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413
    [24] HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122130. doi: 10.1016/j.ijheatmasstransfer.2021.122130
    [25] 胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242

    HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodyna-mica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242
    [26] SHEN C. Rarefied gas dynamics: fundamentals, simulations and micro flows[M]. Berlin and Heidelberg: Springer-Verlag, 2005. doi: 10.1007/b138784
    [27] SWINBANK W C. Long-wave radiation from clear skies[J]. Quarterly Journal of the Royal Meteorological Society, 1963, 89(381): 339–348. doi: 10.1002/qj.49708938105
    [28] POLYAKOV A F. Development of secondary free-convection currents in forced turbulent flow in horizontal tubes[J]. Journal of Applied Mechanics and Technical Physics, 1974, 15(5): 632–637. doi: 10.1007/BF00851521
    [29] PETUKHOV B S, POLYAKOV A F, LAUNDER B E. Heat transfer in turbulent mixed convection[M]. New York: Hemisphere Publishing Corporation, 1988. doi: 10.1137/1032068
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  3161
  • HTML全文浏览量:  136
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-24
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-02-17
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日