留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源数据融合的翼型表面压强精细化重构方法

赵旋 彭绪浩 邓子辰 张伟伟

赵旋,彭绪浩,邓子辰,等. 基于多源数据融合的翼型表面压强精细化重构方法[J]. 实验流体力学,2022,36(3):93-101 doi: 10.11729/syltlx20210166
引用本文: 赵旋,彭绪浩,邓子辰,等. 基于多源数据融合的翼型表面压强精细化重构方法[J]. 实验流体力学,2022,36(3):93-101 doi: 10.11729/syltlx20210166
ZHAO X,PENG X H,DENG Z C,et al. Fine reconstruction method of airfoil surface pressure based on multi-source data fusion[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):93-101. doi: 10.11729/syltlx20210166
Citation: ZHAO X,PENG X H,DENG Z C,et al. Fine reconstruction method of airfoil surface pressure based on multi-source data fusion[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):93-101. doi: 10.11729/syltlx20210166

基于多源数据融合的翼型表面压强精细化重构方法

doi: 10.11729/syltlx20210166
基金项目: 装备预研重点实验室基金(614220119040101);国家自然科学基金(91852115,12072282);国家数值风洞项目(NNW2018-ZT1B01)
详细信息
    作者简介:

    赵旋:(1997—),男,陕西西安人,硕士研究生。研究方向:分布载荷稀疏重构、气动力建模、多源数据融合。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学航空学院(710072)。E-mail:xuanzhao@mail.nwpu.edu.cn

    通讯作者:

    E-mail:aeroelastic@nwpu.edu.cn

  • 中图分类号: V211.3

Fine reconstruction method of airfoil surface pressure based on multi-source data fusion

  • 摘要: 在风洞试验模型表面布置测压孔是获得表面压力分布的重要手段,但受限于空间位置和试验成本,通常难以在复杂模型表面布置足量的测压孔获得完整的表面压力分布信息,直接积分获得的升力和力矩精度不足,因此提出了一种融合稀疏的风洞试验数据和数值计算(CFD)数据的方法,通过较少的风洞测压试验数据获得高精度的压力分布。首先通过本征正交分解技术提取数值计算数据的压力分布低维特征(POD基函数),然后利用稀疏的试验测压数据,通过压缩感知算法获得基函数的坐标,最后将坐标转化到物理空间重构出压力分布。利用定常固定翼型变状态以及变几何变来流状态算例验证该方法的精度,重构结果均能精确匹配试验结果。该重构方法可在一定程度上解决空间受限稀疏观测条件下的分布载荷精细化重构难题。
  • 图  1  算法框架流程

    Figure  1.  Algorithm framework process

    图  2  压缩感知框架

    Figure  2.  Compressed sensing framework

    图  3  NACA0012翼型网格

    Figure  3.  NACA0012 airfoil grid

    图  4  NACA0012亚声速重构结果

    Figure  4.  Subsonic reconstruction results of NACA0012 airfoil

    图  5  NACA0012亚声速重构结果

    Figure  5.  Subsonic reconstruction results of NACA0012 airfoil

    图  6  稀疏重构与插值重构结果对比

    Figure  6.  Comparison of sparse reconstruction and interpolation reconstruction

    图  7  NACA0012翼型跨声速重构结果

    Figure  7.  Transonic reconstruction results of NACA0012 airfoil

    图  8  NACA0012翼型跨声速重构结果

    Figure  8.  Transonic reconstruction results of NACA0012 airfoil

    图  9  翼型采样空间

    Figure  9.  The airfoil sampling space

    图  10  变几何变来流状态重构结果

    Figure  10.  Reconstruction of variable geometry with variable flow state

    表  1  重构误差

    Table  1.   Reconstruction error

    ${C_{{l} } }$${C_{{m} } }$
    实验0.39100.0030
    重构0.38620.0017
    Absolute error0.00480.0013
    Relative error0.01220.4333
    下载: 导出CSV

    表  2  误差区间

    Table  2.   Error interval

    上限下限
    $C_{l\_{\rm{error}}}$0.00500.0010
    $C_{m\_{\rm{error}}}$0.00350.0010
    下载: 导出CSV

    表  3  重构误差

    Table  3.   Reconstruction error

    (a)(b)
    ${C_{l,{\rm{CFD}}} }$ 0.7650 0.6730
    ${C_{l,{\rm{exp}}} }$ 0.7040 0.6130
    ${C_{l,{\rm{r}}} }$ 0.7058 0.6143
    $C_{l\_{\rm{error} } }$ 0.0018 0.0013
    Relative error(Cl 0.0026 0.0021
    RMSE 0.0705 0.0655
    下载: 导出CSV

    表  4  重构误差

    Table  4.   Reconstruction error

    (a)(b)(c)
    ${C_{l,{\rm{exp}}} }$0.53300.40800.1270
    ${C_{l,{\rm{r} } } }$0.52920.40470.1269
    $C_{l\_{\rm{error} } }$0.00380.00330.0001
    Relative error($ {C_{{l}}} $)0.00710.00690.0001
    ${C_{m,{\rm{exp}}} }$0.00150.00430.0036
    ${C_{m,{\rm{r}}} }$0.00740.00890.0050
    $C_{m\_{\rm{error} } }$0.00590.00460.0014
    Relative error($ {C_m} $)3.93331.06980.3888
    RMSE0.05780.03800.0318
    下载: 导出CSV

    表  5  误差区间

    Table  5.   Error interval

    上限下限
    $C_{l\_{\rm{error} } }$0.0050.001
    $C_{m\_{\rm{error} } }$0.0060.001
    下载: 导出CSV

    表  6  重构误差

    Table  6.   Reconstruction error

    (a)(b)(c)
    ${C_{l,{\rm{exp}}} }$1.02400.25800.5660
    ${C_{l,{\rm{r}}} }$1.02420.26280.5627
    $C_{l\_{\rm{error} } }$0.00020.00480.0033
    Relative error(${C_{{l} } }$)0.00020.01860.0058
    ${C_{m,{\rm{exp}}} }$–0.04050.0055–0.082
    ${C_{m,{\rm{r}}} }$–0.04000.0035–0.0795
    $C_{m\_{\rm{error} } }$0.00050.0020.0025
    Relative error(${C_{{m} } }$)0.01230.36360.0305
    下载: 导出CSV

    表  7  误差区间

    Table  7.   Error interval

    上限下限
    $C_{l\_{\rm{error} } }$0.0050.001
    $C_{m\_{\rm{error} } }$0.0050.001
    下载: 导出CSV
  • [1] 郑亚青. WDPSS缩比模型的低速风洞测力试验[J]. 华侨大学学报(自然科学版),2009,30(2):119-122.

    ZHENG Y Q. Force-measuring experiment for the scale model of WDPSS in low-speed wind tunnel[J]. Journal of Huaqiao University (Natural Science),2009,30(2):119-122.
    [2] 李平,谢艳,杨奇磷. 2.4 m风洞大规模测压试验技术及应用[J]. 实验流体力学,2002,16(2):92-96. doi: 10.3969/j.issn.1672-9897.2002.02.018

    LI P,XIE Y,YANG Q L. Test technique and application of large-scale pressure measurement in the 2.4 m × 2.4 m transonic wind tunnel[J]. Experiments and Measurements in Fluid Mechanics,2002,16(2):92-96. doi: 10.3969/j.issn.1672-9897.2002.02.018
    [3] BELYAEV M,BURNAEV E,KAPUSHEV E,et al. Building data fusion surrogate models for spacecraft aerodynamic problems with incomplete factorial design of experiments[J]. Advanced Materials Research,2014,1016:405-412. doi: 10.4028/www.scientific.net/amr.1016.405
    [4] GHOREYSHI M,BADCOCK K J,WOODGATE M A. Accelerating the numerical generation of aerodynamic models for flight simulation[J]. Journal of Aircraft,2009,46(3):972-980. doi: 10.2514/1.39626
    [5] 王文正,桂业伟,何开锋,等. 基于数学模型的气动力数据融合研究[J]. 空气动力学学报,2009,27(5):524-528. doi: 10.3969/j.issn.0258-1825.2009.05.004

    WANG W Z,GUI Y W,HE K F,et al. Aerodynamic data fusion technique exploration[J]. Acta Aerodynamica Sinica,2009,27(5):524-528. doi: 10.3969/j.issn.0258-1825.2009.05.004
    [6] WANG X,KOU J Q,ZHANG W W. Multi-fidelity surrogate reduced-order modeling of steady flow estimation[J]. International Journal for Numerical Methods in Fluids,2020,92(12):1826-1844. doi: 10.1002/fld.4850
    [7] KOU J Q,ZHANG W W. Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[J]. Applied Mathematical Modelling,2019,76:832-855. doi: 10.1016/j.apm.2019.06.034
    [8] HE L, ZHOU Y, QIAN W, et al. Aerodynamic data fusion with a multi-fidelity surrogate modeling method[C]//Proc of the 7th European Conference for Aeronautics and Space Sciences. 2017.
    [9] MIFSUD M,VENDL A,HANSEN L U,et al. Fusing wind-tunnel measurements and CFD data using constrained gappy proper orthogonal decomposition[J]. Aerospace Science and Technology,2019,86:312-326. doi: 10.1016/j.ast.2018.12.036
    [10] PERRON C. Multi-fidelity reduced-order modeling applied to fields with inconsistent representations[D]. Atlanta : Georgia Institute of Technology, 2020.
    [11] RENGANATHAN S A,HARADA K,MAVRIS D N. Aerodynamic data fusion toward the digital twin paradigm[J]. AIAA Journal,2020,58(9):3902-3918. doi: 10.2514/1.J059203
    [12] SUN S X,LIU S,LIU J,et al. Wind field reconstruction using inverse process with optimal sensor placement[J]. IEEE Transactions on Sustainable Energy,2019,10(3):1290-1299. doi: 10.1109/TSTE.2018.2865512
    [13] ZHAO X,DU L,PENG X H,et al. Research on refined reconstruction method of airfoil pressure based on compressed sensing[J]. Theoretical and Applied Mechanics Letters,2021,11(2):100223. doi: 10.1016/j.taml.2021.100223
    [14] LI K,KOU J Q,ZHANG W W. Deep learning for multifidelity aerodynamic distribution modeling from experimental and simulation data[J]. AIAA Journal,2022:1-15. doi: 10.2514/1.J061330
    [15] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [16] 寇家庆,张伟伟,高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报,2016,37(9):2679-2689.

    KOU J Q,ZHANG W W,GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica,2016,37(9):2679-2689.
    [17] 罗杰,段焰辉,蔡晋生. 基于本征正交分解的流场快速预测方法研究[J]. 航空工程进展,2014,5(3):350-357. doi: 10.3969/j.issn.1674-8190.2014.03.014

    LUO J,DUAN Y H,CAI J S. A quick method of flow field prediction based on proper orthogonal decomposition[J]. Advances in Aeronautical Science and Engineering,2014,5(3):350-357. doi: 10.3969/j.issn.1674-8190.2014.03.014
    [18] 余路,曲建岭,高峰,等. 基于过完备字典的缺失振动数据压缩感知重构算法[J]. 系统工程与电子技术,2017,39(8):1871-1877. doi: 10.3969/j.issn.1001-506X.2017.08.29

    YU L,QU J L,GAO F,et al. Missing vibration data reconstruction using compressed sensing based on over-complete dictionary[J]. Systems Engineering and Electronics,2017,39(8):1871-1877. doi: 10.3969/j.issn.1001-506X.2017.08.29
    [19] 田引黎,杨林华,张鹏嵩,等. 基于半张量积压缩感知的形变数据重构在航天器结构健康监测中的应用[J]. 航天器环境工程,2019,36(2):134-138. doi: 10.12126/see.2019.02.005

    TIAN Y L,YANG L H,ZHANG P S,et al. Deformation data reconstruction based on semi-tensor compressed sensing in structural health monitoring of spacecraft[J]. Spacecraft Environment Engineering,2019,36(2):134-138. doi: 10.12126/see.2019.02.005
    [20] 吴超,王勇,田洪伟,等. 基于盲压缩感知模型的图像重构方法[J]. 系统工程与电子技术,2014,36(6):1050-1056. doi: 10.3969/j.issn.1001-506X.2014.06.06

    WU C,WANG Y,TIAN H W,et al. Image reconstruction method based on blind compressed sensing model[J]. Systems Engineering and Electronics,2014,36(6):1050-1056. doi: 10.3969/j.issn.1001-506X.2014.06.06
    [21] Langley Research Center. 2DN00: 2D NACA 0012 airfoil validation case[EB/OL]. (2021-11-12) [2021-12-02]. https://turbmodels.larc.nasa.gov/naca0012_val.html.
    [22] Thibert J J, Grandjacques M. Experimental Data Base for Computer Program Assessment[R]. AGARD-AR-138, 1979.
    [23] HARRIS C D. Two-dimensional aerodynamic character-istics of the NACA 0012 airfoil in the Langley 8 foot transonic pressure tunnel[R]. NASA-TM-81927, 1981.
    [24] HELTON J C,DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety,2003,81(1):23-69. doi: 10.1016/S0951-8320(03)00058-9
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  1823
  • HTML全文浏览量:  336
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2022-03-11
  • 录用日期:  2022-03-11
  • 网络出版日期:  2022-07-12
  • 刊出日期:  2022-07-04

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日