留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子追踪测速的壁面摩擦应力测量

许德辰 张悦 刘欣乐 李文丰

许德辰,张悦,刘欣乐,等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学,2022,36(2):131-138 doi: 10.11729/syltlx20210156
引用本文: 许德辰,张悦,刘欣乐,等. 基于粒子追踪测速的壁面摩擦应力测量[J]. 实验流体力学,2022,36(2):131-138 doi: 10.11729/syltlx20210156
XU D C,ZHANG Y,LIU X L,et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):131-138. doi: 10.11729/syltlx20210156
Citation: XU D C,ZHANG Y,LIU X L,et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):131-138. doi: 10.11729/syltlx20210156

基于粒子追踪测速的壁面摩擦应力测量

doi: 10.11729/syltlx20210156
基金项目: 国家自然科学基金(12102355);翼型、叶栅空气动力学国家级实验室稳定支持项目(D5050200006);中央高校基本业务经费(D5000210473);111引智基地(B17037)
详细信息
    作者简介:

    许德辰:(1996—),男,天津人,硕士研究生。研究方向:航空工程。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学(710072)。E-mail:xdc@mail.nwpu.edu.cn

    通讯作者:

    E-mail:w.li@nwpu.edu.cn

  • 中图分类号: TB937

Measurement of wall-shear stress via micro-particle tracking velocimetry

  • 摘要: 采用微粒子追踪测速技术(Micro-Particle Tracking Velocimetry,µ-PTV)对近壁面的流场开展高空间分辨率测量,通过解析黏性底层的速度分布,应用一次线性回归计算得到壁面摩擦应力。测量了不同雷诺数(基于动量损失厚度 )下的湍流边界层壁面摩擦切应力,在Reθ =1200时获得了罕见回流事件的发生概率和流场结构。实验结果表明,采用µ-PTV技术可以实现壁面摩擦应力的准确测量,在Reθ =1634~4070时,摩擦阻力系数测量误差小于2%。回流事件的概率极低,在Reθ =1200时约为0.05%,尺度小于8×30个壁面单位,因此回流事件的测量对测量技术的空间分辨率要求较高;分析结果表明回流事件伴随壁面附近的强展向涡出现。
  • 图  1  PIV和µ-PTV的流场测量示意图

    Figure  1.  Flow fields measurement diagram of PIV and µ-PTV

    图  2  平均流向速度和流向速度脉动的湍流统计误差

    Figure  2.  Turbulence statistical errors of the mean streamwise velocity and streamwise velocity fluctuations

    图  3  通过黏性底层线性段和对数区拟合得出壁面摩擦应力

    Figure  3.  The wall friction stress obtained by fitting the linear region of sublayer and fitting logarithmic region, respectively

    图  4  不同雷诺数下在x=1 400 mm处通过µ-PTV测量得到的壁面摩擦系数

    Figure  4.  The wall friction stress coefficient measured by µ-PTV at different Reynolds numbers at x = 1 400 mm

    图  5  壁面摩擦应力脉动

    Figure  5.  The fluctuations of the wall-shear stress

    图  6  利用PIV和µ-PTV测量得到的边界层统计量

    Figure  6.  Statistics of the boundary layer flow measured via PIV and µ-PTV

    图  7  壁面摩擦应力脉动和回流事件的概率

    Figure  7.  The probability of wall friction stress fluctuation and reversal flow events

    图  8  4个不同时刻测量得到的回流事件及所对应的速度和涡量分布

    Figure  8.  Velocity and vorticity distributions of four reversal flow events captured at different time

    表  1  零压力梯度湍流边界层流动参数

    Table  1.   Parameters of the zero-pressure gradient turbulent boundary layers

    xReθU/(m·s–1θ/mmuτlinear/(m·s–1uτClauser/(m·s–1ν· uτ–1/µmδ0.99/mmH12
    86312008.002.3100.3510.33343.719.831.412
    140010093.963.9650.1830.17984.032.371.473
    140016345.964.3550.2510.24861.134.591.449
    140021307.934.1260.3260.32047.132.921.435
    140025659.794.0750.3950.38538.932.051.426
    1400297811.783.9200.4600.45333.431.301.419
    1400363815.703.5730.6010.60725.528.841.402
    1400407018.653.3890.7090.69021.727.531.396
    下载: 导出CSV
  • [1] 许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展,2015,45(1):111-140.

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics,2015,45(1):111-140.
    [2] BAARS W J,SQUIRE D T,TALLURU K M,et al. Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element[J]. Experiments in Fluids,2016,57(5):1-16. doi: 10.1007/s00348-016-2168-y
    [3] CHENG X Q,WONG C W,ZHOU Y. A floating-element force balance of high resolution for friction drag measure-ment[J]. Measurement Science and Technology,2020,32(3):035301. doi: 10.1088/1361-6501/abb33d
    [4] DRIVER D M. Application of oil-film interferometry skin-friction measurement to large wind tunnels[J]. Experiments in Fluids,2003,34(6):717-725. doi: 10.1007/s00348-003-0613-1
    [5] IRELAND P T,JONES T V. Liquid crystal measurements of heat transfer and surface shear stress[J]. Measurement Science and Technology,2000,11(7):969-986. doi: 10.1088/0957-0233/11/7/313
    [6] BAI H L,LI W J,CHOW W,et al. A carbon nanotube sensor for wall shear stress measurement[J]. Experiments in Fluids,2010,48(4):679-691. doi: 10.1007/s00348-009-0760-0
    [7] LIU X H,LI Z Y,WU C J,et al. Toward calibration-free wall shear stress measurement using a dual hot-film sensor and Kelvin bridges[J]. Measurement Science and Technology,2018,29(10):105303. doi: 10.1088/1361-6501/aadb1b
    [8] HEAD M R,RECHENBERG I. The Preston tube as a means of measuring skin friction[J]. Journal of Fluid Mechanics,1962,14(1):1-17. doi: 10.1017/s0022112062001020
    [9] DURST F,KIKURA H,LEKAKIS I,et al. Wall shear stress determination from near-wall mean velocity data in turbu-lent pipe and channel flows[J]. Experiments in Fluids,1996,20(6):417-428. doi: 10.1007/BF00189380
    [10] HUTCHINS N,CHOI K S. Accurate measurements of local skin friction coefficient using hot-wire anemometry[J]. Progress in Aerospace Sciences,2002,38(4-5):421-446. doi: 10.1016/S0376-0421(02)00027-1
    [11] LI W F,ROGGENKAMP D,JESSEN W,et al. Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers[J]. Measurement Science and Technology,2017,28(1):015302. doi: 10.1088/1361-6501/aa4e9e
    [12] RODRÍGUEZ-LÓPEZ E,BRUCE P J K,BUXTON O R H. A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile[J]. Experiments in Fluids,2015,56(4):1-16. doi: 10.1007/s00348-015-1935-5
    [13] GATTI D,GÜTTLER A,FROHNAPFEL B,et al. Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow[J]. Experiments in Fluids,2015,56(5):1-15. doi: 10.1007/s00348-015-1983-x
    [14] KÄHLER C J,SCHOLZ U,ORTMANNS J. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV[J]. Experiments in Fluids,2006,41(2):327-341. doi: 10.1007/s00348-006-0167-0
    [15] 申俊琦,王建杰,潘翀. 平板湍流边界层瞬时摩擦阻力的光学测量和统计分析[J]. 气体物理,2020,5(5):13-23.

    SHEN J Q,WANG J J,PAN C. Optical measurement and statistical analysis of instantaneous wall-shear stress in a turbulent boundary layer[J]. Physics of Gases,2020,5(5):13-23.
    [16] SPALART P R,COLEMAN G N. Numerical study of a separation bubble with heat transfer[J]. European Journal of Mechanics-B/Fluids,1997,16(2):169-189.
    [17] KHOURY G K E,SCHLATTER P,BRETHOUWER G,et al. Turbulent pipe flow: Statistics, re-dependence, structures and similarities with channel and boundary layer flows[J]. Journal of Physics:Conference Series,2014,506:012010. doi: 10.1088/1742-6596/506/1/012010
    [18] CARDESA J I,MONTY J P,SORIA J,et al. Skin-friction critical points in wall-bounded flows[J]. Journal of Physics:Conference Series,2014,506:012009. doi: 10.1088/1742-6596/506/1/012009
    [19] LENAERS P,LI Q,BRETHOUWER G,et al. Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence[J]. Physics of Fluids,2012,24(3):035110. doi: 10.1063/1.3696304
    [20] CHIN R C,MONTY J P,CHONG M S,et al. Conditionally averaged flow topology about a critical point pair in the skin friction field of pipe flows using direct numerical simula-tions[J]. Physical Review Fluids,2018,3(11):114607. doi: 10.1103/physrevfluids.3.114607
    [21] GUERRERO B,LAMBERT M F,CHIN R C. Extreme wall shear stress events in turbulent pipe flows: spatial charac-teristics of coherent motions[J]. Journal of Fluid Mechanics,2020,904:A18. doi: 10.1017/jfm.2020.689
    [22] GUERRERO B,LAMBERT M F,CHIN R C. Precursors of backflow events and their relationship with the near-wall self-sustaining process[J]. Journal of Fluid Mechanics,2022,933:A33. doi: 10.1017/jfm.2021.1082
    [23] ECKELMANN H. The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow[J]. Journal of Fluid Mechanics,1974,65(3):439-459. doi: 10.1017/s0022112074001479
    [24] COLELLA K J,KEITH W L. Measurements and scaling of wall shear stress fluctuations[J]. Experiments in Fluids,2003,34(2):253-260. doi: 10.1007/s00348-002-0552-2
    [25] TROPEA C, YARIN A L, FOSS J F. Springer handbook of experimental fluid mechanics[M]. Berlin: Springer, 2007.
    [26] SORIA J. An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[J]. Experimental Thermal and Fluid Science,1996,12(2):221-233. doi: 10.1016/0894-1777(95)00086-0
    [27] WESTERWEEL J,SCARANO F. Universal outlier detec-tion for PIV data[J]. Experiments in Fluids,2005,39(6):1096-1100. doi: 10.1007/s00348-005-0016-6
    [28] CROCKER J C,GRIER D G. Methods of digital video microscopy for colloidal studies[J]. Journal of Colloid and Interface Science,1996,179(1):298-310. doi: 10.1006/jcis.1996.0217
    [29] BENEDICT L H,GOULD R D. Towards better uncertainty estimates for turbulence statistics[J]. Experiments in Fluids,1996,22(2):129-136. doi: 10.1007/s003480050030
    [30] NAGIB H M,CHAUHAN K A,MONKEWITZ P A. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Enginee-ring Sciences,2007,365(1852):755-770. doi: 10.1098/rsta.2006.1948
    [31] SCHLATTER P,ÖRLÜ R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics,2010,659:116-126. doi: 10.1017/s0022112010003113
    [32] HU Z W,MORFEY C L,SANDHAM N D. Wall pressure and shear stress spectra from direct simulations of channel flow[J]. AIAA Journal,2006,44(7):1541-1549. doi: 10.2514/1.17638
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2266
  • HTML全文浏览量:  257
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2022-02-14
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日