留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习数据融合方法在火箭子级栅格舵气动特性建模应用中的比较研究

许晨舟 杜涛 韩忠华 昝博文 牟宇 张津泽

许晨舟,杜涛,韩忠华,等. 机器学习数据融合方法在火箭子级栅格舵气动特性建模应用中的比较研究[J]. 实验流体力学,2022,36(3):79-92 doi: 10.11729/syltlx20210154
引用本文: 许晨舟,杜涛,韩忠华,等. 机器学习数据融合方法在火箭子级栅格舵气动特性建模应用中的比较研究[J]. 实验流体力学,2022,36(3):79-92 doi: 10.11729/syltlx20210154
XU C Z,DU T,HAN Z H,et al. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):79-92. doi: 10.11729/syltlx20210154
Citation: XU C Z,DU T,HAN Z H,et al. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):79-92. doi: 10.11729/syltlx20210154

机器学习数据融合方法在火箭子级栅格舵气动特性建模应用中的比较研究

doi: 10.11729/syltlx20210154
基金项目: 国家自然科学基金(11972305);航空基金(2019ZA053004);陕西省自然科学基金(2020JM-127);陕西省杰出青年科学基金(2020JC-31);国家数值风洞工程(NNW2019ZT6-A12)
详细信息
    作者简介:

    许晨舟:(1994—),男,江苏无锡人,博士研究生。研究方向:代理模型与气动优化设计方法,高超声速飞行器气动力建模与预测技术,气动数据融合技术。通信地址:陕西省西安市碑林区西北工业大学友谊校区航空楼A座506室(710072)。E-mail:xucz@mail.nwpu.edu.cn

    通讯作者:

    E-mail:dutao_calt@sohu.com

    hanzh@nwpu.edu.cn

  • 中图分类号: V211.3

Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins

  • 摘要: 机器学习数据融合方法可帮助降低飞行器气动数据库建立的成本,加快研制进度,目前已经成为飞行器设计方法领域越来越活跃的研究方向,但其在工程复杂问题方面的应用研究并不充分。将多种常见变可信度数据融合模型应用于运载火箭子级栅格舵落区控制的工程项目,在开展部分工况的风洞试验基础上,结合少量的CFD数值模拟结果,研究相关函数和不同模型预测完整工况气动特性数据的差异性。通过对比加法标度函数修正模型、Co-Kriging模型、分层Kriging模型和多可信度神经网络模型等4种不同的数据融合模型发现:高斯指数相关函数对气动建模问题的适应性更好;Co-Kriging模型对气动数据的内插表现最好;分层Kriging模型对内插的预测精度较高,外插效果不理想;多可信度神经网络模型在外插区域能获得更光滑、合理的预测结果。
  • 图  1  多可信度神经网络模型结构示意图

    Figure  1.  Schematic of multi-fidelity neural network

    图  2  火箭一子级落区控制的栅格舵方案示意图[2]

    Figure  2.  Illustration of grid fins in the rocket first stage landing area control project[2]

    图  3  火箭一子级带栅格舵模型在风洞中试验情况[2]

    Figure  3.  Experimental model of rocket first stage with grid fins in the wind tunnel test[2]

    图  4  火箭一子级带栅格舵外形数值仿真的计算网格[2]

    Figure  4.  Computational grids of CFD simulation for rocket first stage with grid fins[2]

    图  5  火箭一子级带栅格舵外形跨声速段和超声速段俯仰力矩特性

    Figure  5.  Pitching moment characteristics of rocket first stage with grid fins in the transonic and supersonic regimes

    图  6  栅格舵俯仰力矩系数数据集空间分布情况

    Figure  6.  Pitching moment data set of rocket first stage with grid fins

    图  7  不同超参数下的三次样条函数变化

    Figure  7.  Influence of θ on the cubic correlation function

    图  8  不同超参数下的高斯指数函数变化(p = 2)

    Figure  8.  Influence of θ on the Gauss correlation function with p = 2

    图  9  不同参数p时的高斯指数函数变化(θ = 1)

    Figure  9.  Influence of index p on the Gauss correlation function with θ = 1

    图  10  基于不同相关函数的HK模型对俯仰力矩系数建模结果对比(超参数优化范围受限制)

    Figure  10.  Comparison of predicted pitching moment coefficients via HK model based on different correlation functions (with optimization boundaries for hyperparameters)

    图  11  基于不同相关函数的HK模型对俯仰力矩系数建模结果对比(超参数优化范围不作限制)

    Figure  11.  Comparison of predicted pitching moment coefficients via HK model based on different correlation functions (with no optimization boundaries for hyperparameters)

    图  12  采用两种相关函数的不同变可信度模型对俯仰力矩系数建模的结果对比

    Figure  12.  Comparison of predicted pitching moment coefficients via different variable-fidelity model based on the two correlation functions

    图  13  不同变可信度模型对俯仰力矩系数建模内插结果对比

    Figure  13.  Comparison of predicted pitching moment coefficients via different VFMs

    图  14  不同变可信度模型在马赫数为3.5时俯仰力矩系数预测结果的交叉验证对比

    Figure  14.  Comparison of cross validation for predicted pitching moment coefficients via different VFMs at Mach 3.5

    图  15  不同变可信度模型对俯仰力矩系数建模外插结果对比

    Figure  15.  Comparison of predicted pitching moment coefficients via different VFMs

    表  1  俯仰特性风洞试验情况[2]

    Table  1.   Fundamental state for wind tunnel experiment on pitching moment characteristics[2]

    马赫数0.40.80.911.1522.533.54567
    车次数7772772271000
    下载: 导出CSV

    表  2  不同舵偏角下样本分布情况

    Table  2.   Data sets for different elevator deflections of grid fins

    舵偏角–20°–10°10°总计
    训练集样本个数85558555280
    测试集样本个数5515530
    下载: 导出CSV

    表  3  针对俯仰力矩系数建模不同模型精度指标对比

    Table  3.   Comparison of different accuracy indicators for pitching moment coefficients via different VFMs

    舵偏角模 型r2RRMSERMAE
    -20° AS-MFS 0.997148 0.050151 0.080148
    Co-Kriging 0.999482 0.024037 0.035985
    HK 0.998572 0.040432 0.073526
    MFNN 0.949331 0.433717 0.722283
    -10° AS-MFS 0.941375 0.328419 0.535310
    Co-Kriging 0.953788 0.324708 0.455177
    HK 0.938108 0.317452 0.462085
    MFNN 0.842811 0.756029 1.124043
    AS-MFS 0.989935 0.146836 0.245788
    Co-Kriging 0.996639 0.068603 0.109666
    HK 0.993100 0.104178 0.183757
    MFNN 0.985395 0.117386 0.326321
    10° AS-MFS 0.988510 0.097516 0.179175
    Co-Kriging 0.995607 0.060434 0.101578
    HK 0.994743 0.066439 0.101578
    MFNN 0.970473 0.175599 0.318173
    下载: 导出CSV
  • [1] 杜涛,陈闽慷,李凰立,等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报,2018,36(2):315-319. doi: 10.7638/kqdlxxb-2016.0040

    DU T,CHEN M K,LI H L,et al. Research on adaptive preconditioning method for variable complexity model[J]. Acta Aerodynamica Sinica,2018,36(2):315-319. doi: 10.7638/kqdlxxb-2016.0040
    [2] 杜涛,许晨舟,王国辉,等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报,2021,42(1):61-73. doi: 10.3873/j.issn.1000-1328.2021.01.007

    DU T,XU C Z,WANG G H,et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project[J]. Journal of Astronautics,2021,42(1):61-73. doi: 10.3873/j.issn.1000-1328.2021.01.007
    [3] 张天姣,钱炜祺,周宇,等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展,2019,10(1):1-11.

    ZHANG T J,QIAN W Q,ZHOU Y,et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering,2019,10(1):1-11.
    [4] 唐志共,王文正,陈功,等. 气动模型在现代气动试验设计中的应用研究[J]. 空气动力学学报,2017,35(2):172-176. doi: 10.7638/kqdlxxb—2015.0190

    TANG Z G,WANG W Z,CHEN G,et al. Research on the application of aerodynamic models in modern design of aerodynamic experiments[J]. Acta Aerodynamica Sinica,2017,35(2):172-176. doi: 10.7638/kqdlxxb—2015.0190
    [5] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178, 2014.
    [6] 韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5):25-65.

    HAN Z H,XU C Z,QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5):25-65.
    [7] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225.

    HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225.
    [8] 周奇,杨扬,宋学官,等. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报,2020,56(24):219-245. doi: 10.3901/JME.2020.24.219

    ZHOU Q,YANG Y,SONG X G,et al. Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering,2020,56(24):219-245. doi: 10.3901/JME.2020.24.219
    [9] 何开锋,钱炜祺,汪清,等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报,2014,32(6):777-782. doi: 10.7638/kqdlxxb—2014.0072

    HE K F,QIAN W Q,WANG Q,et al. Application of data fusion technique in aerodynamics studies[J]. Acta Aerodynamica Sinica,2014,32(6):777-782. doi: 10.7638/kqdlxxb—2014.0072
    [10] HAFTKA R T. Combining global and local approximations[J]. AIAA Journal,1991,29(9):1523-1525. doi: 10.2514/3.10768
    [11] CHANG K J,HAFTKA R T,GILES G L,et al. Sensitivity-based scaling for approximating structural response[J]. Journal of Aircraft,1993,30(2):283-288. doi: 10.2514/3.48278
    [12] ALEXANDROV N M,DENNIS J E,LEWIS R M,et al. A trust-region framework for managing the use of approximation models in optimization[J]. Structural Optimization,1998,15(1):16-23. doi: 10.1007/BF01197433
    [13] ALEXANDROV N, NIELSEN E, LEWIS R, et al. First-order model management with variable-fidelity physics applied to multi-element airfoil optimization[C]//Proc of the 8th Symposium on Multidisciplinary Analysis and Optimization. 2000. doi: 10.2514/6.2000-4886
    [14] SHU L S,JIANG P,SONG X G,et al. Novel approach for selecting low-fidelity scale factor in multifidelity metamodeling[J]. AIAA Journal,2019,57(12):5320-5330. doi: 10.2514/1.j057989
    [15] PARK C,HAFTKA R T,KIM N H. Low-fidelity scale factor improves Bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function[J]. Structural and Multidisciplinary Optimization,2018,58(2):399-414. doi: 10.1007/s00158-018-2031-2
    [16] WANG S,LIU Y,ZHOU Q,et al. A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design[J]. Structural and Multidisciplinary Optimization,2021,64(6):3637-3652. doi: 10.1007/s00158-021-03044-5
    [17] HAN Z H,GÖRTZ S,ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology,2013,25(1):177-189. doi: 10.1016/j.ast.2012.01.006
    [18] BANDLER J W,BIERNACKI R M,CHEN S H,et al. Space mapping technique for electromagnetic optimization[J]. IEEE Transactions on Microwave Theory and Techniques,1994,42(12):2536-2544. doi: 10.1109/22.339794
    [19] ROBINSON T D,ELDRED M S,WILLCOX K E,et al. Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping[J]. AIAA Journal,2008,46(11):2814-2822. doi: 10.2514/1.36043
    [20] JONSSON E, LEIFSSON L, KOZIEL S. Aerodynamic optimization of wings by space mapping[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-780
    [21] 何磊,钱炜祺,汪清,等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报,2019,37(3):470-479. doi: 10.7638/kqdlxxb—2019.0033

    HE L,QIAN W Q,WANG Q,et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica,2019,37(3):470-479. doi: 10.7638/kqdlxxb—2019.0033
    [22] KENNEDY M,O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika,2000,87(1):1-13. doi: 10.1093/biomet/87.1.1
    [23] QIAN P Z G,WU C F J. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics,2008,50(2):192-204. doi: 10.1198/004017008000000082
    [24] LE GRATIET L,GARNIER J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity[J]. International Journal for Uncertainty Quantification,2014,4(5):365-386. doi: 10.1615/int.j.uncertaintyquantification.2014006914
    [25] XIAO M Y,ZHANG G H,BREITKOPF P,et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation,2018,323:120-131. doi: 10.1016/j.amc.2017.10.055
    [26] ZAYTSEV A. Reliable surrogate modeling of engineering data with more than two levels of fidelity[C]//Proc of the 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). 2016: 341-345. doi: 10.1109/ICMAE.2016.7549563
    [27] ZHOU Q,WU Y D,GUO Z D,et al. A generalized hierarchical co-Kriging model for multi-fidelity data fusion[J]. Structural and Multidisciplinary Optimization,2020,62(4):1885-1904. doi: 10.1007/s00158-020-02583-7
    [28] HAN Z H,GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(5):1205-1210. doi: 10.2514/1.J051243
    [29] ZIMMERMANN R, HAN Z H. Simplified cross-correlation estimation for multifidelity surrogate cokriging models[J]. Advances and Applications in Mathematical Sciences, 2010.
    [30] HAN Z H,GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(9):1885-1896. doi: 10.2514/1.J051354
    [31] MENG X H,KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems[J]. Journal of Computational Physics,2020,401:109020. doi: 10.1016/j.jcp.2019.109020
    [32] MENG X H,BABAEE H,KARNIADAKIS G E. Multi-fidelity Bayesian neural networks: Algorithms and applications[J]. Journal of Computational Physics,2021,438:110361. doi: 10.1016/j.jcp.2021.110361
    [33] HE L,QIAN W Q,ZHAO T,et al. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[J]. Entropy (Basel, Switzerland),2020,22(9):1022. doi: 10.3390/e22091022
    [34] ZHANG X S,XIE F F,JI T W,et al. Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization[J]. Computer Methods in Applied Mechanics and Engineering,2021,373:113485. doi: 10.1016/j.cma.2020.113485
    [35] SATRIA P P,RIZKI Z L,SHIMOYAMA K. Gaussian process surrogate model with composite kernel learning for engineering design[J]. AIAA Journal,2020,58(4):1864-1880. doi: 10.2514/1.J058807
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  1571
  • HTML全文浏览量:  307
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2022-02-23
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-07-12
  • 刊出日期:  2022-07-04

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日