留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速圆锥边界层不稳定性及转捩实验研究

刘是成 姜应磊 董昊

刘是成,姜应磊,董昊. 高超声速圆锥边界层不稳定性及转捩实验研究[J]. 实验流体力学,2022,36(2):122-130 doi: 10.11729/syltlx20210136
引用本文: 刘是成,姜应磊,董昊. 高超声速圆锥边界层不稳定性及转捩实验研究[J]. 实验流体力学,2022,36(2):122-130 doi: 10.11729/syltlx20210136
LIU S C,JIANG Y L,DONG H. Experimental study on instability and transition over hypersonic boundary layer on a straight cone[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):122-130. doi: 10.11729/syltlx20210136
Citation: LIU S C,JIANG Y L,DONG H. Experimental study on instability and transition over hypersonic boundary layer on a straight cone[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):122-130. doi: 10.11729/syltlx20210136

高超声速圆锥边界层不稳定性及转捩实验研究

doi: 10.11729/syltlx20210136
基金项目: 国家数值风洞(2020-DY01-001);国家自然科学基金(11872208);中央高校基本科研业务费专项资金(NF2020001)
详细信息
    作者简介:

    刘是成:(1994—),男,四川成都人,博士研究生。研究方向:高超声速边界层稳定性与转捩。通信地址:江苏省南京市南京航空航天大学明故宫校区(210016)。E-mail:liushicheng@nuaa.edu.cn

    通讯作者:

    E-mail:donghao@nuaa.edu.cn

  • 中图分类号: O355

Experimental study on instability and transition over hypersonic boundary layer on a straight cone

  • 摘要: 在马赫数为6的条件下,利用红外热成像和高频脉动压力传感器(PCB)对前缘半径2 mm、半锥角7°的圆锥模型进行了边界层稳定性及转捩实验研究。实验结果表明,在常规高超声速风洞流场中圆锥三维边界层存在定常横流涡、低频和高频不稳定波;有迎角条件下,低频(15~50 kHz)和高频(210~340 kHz)不稳定波同时存在,圆锥边界层更容易发生转捩。随着迎角的增加,定常横流涡“条带”结构更加清晰,模型尾段的转捩阵面向迎风面移动,低频和高频不稳定波振幅增大、频带范围变宽;同一迎角下,增大单位雷诺数,低频、高频不稳定波和定常横流涡更早地出现并增长至饱和,且伴随着不稳定波的振幅增大和频带变宽,其中低频不稳定波比高频不稳定波更早出现。
  • 图  1  NHW风洞

    Figure  1.  NHW hypersonic wind tunnel

    图  2  红外相机安装示意图

    Figure  2.  Infrared cameras setup

    图  3  圆锥模型示意图

    Figure  3.  Schematic diagram of cone model

    图  4  0°迎角圆锥表面温升分布(Ma=6,α=0°,Re=9.15×106 m–1

    Figure  4.  The distribution of temperature rise on cone model surface. Ma=6, α=0°, Re=9.15×106 m–1, (a) side view, (b) leeside view

    图  5  0°迎角圆锥表面中心线温升分布

    Figure  5.  The distribution of temperature rise on the center line of cone model surface

    图  6  0°迎角下90°方位角尖锥母线压力脉动功率谱

    Figure  6.  The Power spectrum density of pressure fluctuation along the generatrix at 90° azimuth for α=0°

    图  7  不同迎角下圆锥侧面/背风面温升分布图

    Figure  7.  The distribution of temperature rise on the side/leeside of the cone model surface for different angle of attack

    图  8  不同迎角下90°方位角尖锥母线压力脉动功率谱

    Figure  8.  The Power spectrum density of pressure fluctuation along the generatrix at 90° azimuth for different angle of attack

    图  9  不同迎角下不稳定波振幅沿母线分布

    Figure  9.  The amplitude of pressure fluctuation along the generatrix at different angle of attack for different frequency bandwidth

    图  10  Re=4.80×106 m–1圆锥模型侧面的温升分布及对应功率谱

    Figure  10.  The distribution of temperature rise on the side of the cone model surface and corresponding PSD for Re=4.80×106 m–1

    图  11  Re=6.37×106 m–1时模型侧面温升分布及对应功率谱

    Figure  11.  The distribution of temperature rise on the side of the cone model surface and corresponding PSD for Re=6.37×106 m–1

    图  12  Re=8.10×106 m–1时模型侧面温升分布及对应功率谱

    Figure  12.  The distribution of temperature rise on the side of the cone model surface and corresponding PSD for Re=8.10×106 m–1

    图  13  不同单位雷诺数下不稳定波振幅沿母线变化

    Figure  13.  The amplitude of pressure fluctuation along the generatrix at different Re for different frequency bandwidth

    表  1  PCB传感器测点位置

    Table  1.   PCB sensors installation position

    测点距离头部轴向距离x/mm
    1244.0
    2269.8
    3303.6
    4328.4
    5353.2
    6378.0
    7402.8
    8427.6
    下载: 导出CSV
  • [1] 刘向宏,赖光伟,吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报,2018,36(2):196-212.

    LIU X H,LAI G W,WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica,2018,36(2):196-212.
    [2] MACK L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal,1975,13(3):278-289. doi: 10.2514/3.49693
    [3] MACK L M. Boundary layer linear stability theory[R]. AGARD-R-709, 1984.
    [4] STETSON K, KIMMEL R. On hypersonic boundary-layer stability[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-737
    [5] ZHANG C H,TANG Q,LEE C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica,2013,29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [6] 徐席旺, 易仕和, 张锋, 等. 高超声速圆锥边界层转捩实验研究[J/OL]. 气体物理: 1-15[2022-02-16].http://kns.cnki.net/kcms/detail/10.1384.O3.20210810.1915.002.html. doi: 10.19527/j.cnki.2096-1642.0905
    [7] 余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75. doi: 10.11729/syltlx20190076

    YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75. doi: 10.11729/syltlx20190076
    [8] MALIK M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal,1989,27(11):1487-1493. doi: 10.2514/3.10292
    [9] REED H L,SARIC W S. Stability of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics,1989,21:235-284. doi: 10.1146/annurev.fl.21.010189.001315
    [10] KOCIAN T S,MOYES A J,REED H L,et al. Hypersonic crossflow instability[J]. Journal of Spacecraft and Rockets,2018,56(2):432-446. doi: 10.2514/1.A34289
    [11] McKIERNAN G, CHYNOWETH B C, EDELMAN J B, et al. Instability and transition experiments in the boeing/AFOSR Mach 6 quiet tunnel[C]//Proc of the 45th AIAA Thermophysics Conference. 2015. doi: 10.2514/6.2015-2317
    [12] NEEL I T, LEIDY A, BOWERSOX R D. Preliminary study of the effect of environmental disturbances on hypersonic crossflow instability on the HIFiRE-5 elliptic cone[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0767
    [13] BORG M, KIMMEL R, STANFIELD S. Crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel[C]//Proc of the 42nd AIAA Fluid Dynamics Conference and Exhibit. 2012. doi: 10.2514/6.2012-2821
    [14] ZHU W K,SHI M T,ZHU Y D,et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids,2020,32(1):011701. doi: 10.1063/1.5139546
    [15] JULIANO T J,PAQUIN L A,BORG M P. HIFiRE-5 boundary-layer transition measured in a Mach-6 quiet tunnel with infrared thermography[J]. AIAA Journal,2019,57(5):2001-2010.
    [16] WARD C A C. Hypersonic crossflow instability and transition on a circular cone at angle of attack[D]. West Lafayette: Purdue University.2010. doi: 10.2514/1.J056750
    [17] YATES H B,TUFTS M W,JULIANO T J. Analysis of the hypersonic cross-flow instability with experimental wavenumber distributions[J]. Journal of Fluid Mechanics,2020,883:A50. doi: 10.1017/jfm.2019.864
    [18] VAN DEN KROONENBERG A, CANDLER G, ESTORF M, et al. Infrared measurements of boundary-layer transition on an inclined cone at Mach 6[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-1063
    [19] 沙心国,郭跃,纪锋,等. 高超声速圆锥边界层失稳条纹结构实验研究[J]. 空气动力学学报,2020,38(1):143-147. doi: 10.7638/kqdlxxb-2019.0141

    SHA X G,GUO Y,JI F,et al. Experimental study on instability streak structure over a hypersonic cone[J]. Acta Aerodynamica Sinica,2020,38(1):143-147. doi: 10.7638/kqdlxxb-2019.0141
    [20] MUÑOZ F,HEITMANN D,RADESPIEL R. Instability modes in boundary layers of an inclined cone at Mach 6[J]. Journal of Spacecraft and Rockets,2014,51(2):442-454. doi: 10.2514/1.A32564
    [21] PEREZ E, REED H L, KUEHL J. Instabilities on a hypersonic yawed straight cone[C]//Proc of the 43rd Fluid Dynamics Conference. 2013. doi: 10.2514/6.2013-2879
    [22] BORG M P,KIMMEL R L,STANFIELD S. Traveling crossflow instability for the HIFiRE-5 elliptic cone[J]. Journal of Spacecraft and Rockets,2015,52(3):664-673. doi: 10.2514/1.A33145
    [23] SHI M T, ZHU W K, LEE C B. Crossflow instability of hypersonic flow over an elliptic cone[C]//Proc of the AIAA AVIATION 2020 FORUM, VIRTUAL EVENT. 2020. doi: 10.2514/6.2020-3073
    [24] MASLOV A A,SHIPYLUK A N,BOUNTIN D A,et al. Mach 6 boundary-layer stability experiments on sharp and blunt cones[J]. Journal of Spacecraft and Rockets,2006,43(1):71-76. doi: 10.2514/1.15246
    [25] NIU H B,YI S H,LIU X L,et al. Experimental investigation of nose-tip bluntness effects on the hypersonic crossflow instability over a cone[J]. International Journal of Heat and Fluid Flow,2020,86:108746. doi: 10.1016/j.ijheatfluidflow.2020.108746
    [26] CHEN J,DONG S,CHEN X,et al. Hypersonic boundary layer transitions over a yawed, blunt cone[J]. Aerospace Science and Technology,2021,119:107170. doi: 10.1016/j.ast.2021.107170
    [27] EDELMAN J B,SCHNEIDER S P. Secondary instabilities of hypersonic stationary crossflow waves[J]. AIAA Journal,2018,56(1):182-192. doi: 10.2514/1.j056028
    [28] STETSON K F. Boundary-layer separation on slender cones at angle of attack[J]. AIAA Journal,1972,10(5):642-648. doi: 10.2514/3.50169
    [29] 霍俊杰, 易仕和, 牛海波, 等. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究[J/OL]. 气体物理: 1-10.[2022-02-16]. http://https://kns.cnki.net/kns8/defaultresult/index.doi: 10.19527/j.cnki.2096-1642.0906.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2272
  • HTML全文浏览量:  203
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-02-11
  • 录用日期:  2022-02-15
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日