留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于丙酮/CH2O双组分PLIF技术的横向声波激励预混火焰未燃区/预热区特性研究

闫博 孙永超 朱家健 吴戈 万明罡 田轶夫 陈爽 孙明波

闫博,孙永超,朱家健,等. 基于丙酮/CH2O双组分PLIF技术的横向声波激励预混火焰未燃区/预热区特性研究[J]. 实验流体力学,2022,36(2):139-145 doi: 10.11729/syltlx20210111
引用本文: 闫博,孙永超,朱家健,等. 基于丙酮/CH2O双组分PLIF技术的横向声波激励预混火焰未燃区/预热区特性研究[J]. 实验流体力学,2022,36(2):139-145 doi: 10.11729/syltlx20210111
YAN B,SUN Y C,ZHU J J,et al. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):139-145. doi: 10.11729/syltlx20210111
Citation: YAN B,SUN Y C,ZHU J J,et al. Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):139-145. doi: 10.11729/syltlx20210111

基于丙酮/CH2O双组分PLIF技术的横向声波激励预混火焰未燃区/预热区特性研究

doi: 10.11729/syltlx20210111
基金项目: 国家重点研发计划(2020YFA0405700);国家自然科学基金(51606217,91741205);湖南省创新型省份建设专项(2019RS2028)
详细信息
    作者简介:

    闫博:(1990—),男,甘肃天水人,博士研究生,工程师。研究方向:激光光谱诊断。通信地址:湖南省长沙市开福区国防科技大学一号院(410073)。E-mail:372340756@qq.com

    通讯作者:

    E-mail:jjzhu@nudt.edu.cn

    sunmingbo@nudt.edu.cn

  • 中图分类号: V21

Investigation of unburned/preheated area characteristics of a premixed flame under transverse acoustic excitation based on acetone and CH2O PLIF technology

  • 摘要: 热声不稳定问题是航空航天动力装置发展中的难题之一,针对预混燃烧火焰的热声不稳定机理研究是解决实际发动机热声振荡难题的必经之路。采用丙酮/CH2O双组分PLIF同步测量技术对横向声波激励下的预混火焰特性进行了研究,获得了横向声波激励预混燃烧火焰中的未燃区/预热区分布变化情况。实验结果表明:随着激励声波声压级的增大和激励声波频率的减小,未燃区/预热区形貌的变化逐渐增强;同时,随着激励声波相位的变化,未燃区/预热区形貌呈周期性变化。对丙酮PLIF图像进行边界提取,获取了不同声波频率、声压级条件下的未燃区抬举高度、扩散面积。利用丙酮/CH2O双组分PLIF同步测量成功捕捉到典型声波频率、声压级下的火焰形貌演化过程,并分析了该典型工况下的火焰熄灭现象及其机制。
  • 图  1  层流预混燃具和丙酮示踪系统简图

    Figure  1.  Schematic diagram of laminar premixed combustion burner and acetone tracer system

    图  2  丙酮/CH2O双组分PLIF测量系统简图

    Figure  2.  Schematic diagram of acetone / CH2O PLIF system

    图  3  未燃气抬举高度H、扩散面积S计算示意图

    Figure  3.  Schematic diagram of calculating the lifting height and diffu-sion area of premixed gas

    图  4  不同激励声压级下的丙酮/CH2O双组分LIF图像

    Figure  4.  The single-shot acetone/CH2O LIF images at different exci-tation sound pressure levels.

    图  5  不同激励声波频率下的丙酮/CH2O双组分LIF图像

    Figure  5.  The single-shot acetone/CH2O LIF images at different excita-tion sound frequencies

    图  6  不同激励声波相位下的丙酮/CH2O双组分LIF 图像

    Figure  6.  The single-shot acetone/CH2O LIF images at different excita-tion sound phases

    图  7  不同激励声波频率、声压级下的预混燃气未燃区抬举高度 H 和扩散面积 S

    Figure  7.  Lifting height H and diffusion area S of premixed gas under different excitation sound frequencies and SPL

    图  8  激励声波对层流预混燃烧火焰作用

    Figure  8.  The interaction between acoustic wave and the laminar premixed combustion flame

    图  9  极限激励声波条件下的丙酮/CH2O双组分PLIF瞬态图像序列

    Figure  9.  The single-shot acetone /CH2O PLIF images sequences under the limited excitation acoustic wave condition

    图  10  极限激励声波条件下的CH2O–PLIF信号累加统计结果

    Figure  10.  The accumulated CH2O–PLIF signal results of the single-shot acetone/CH2O PLIF images sequences under the limited excitation acoustic wave condition

    表  1  层流预混燃具实验工况

    Table  1.   Laminar premixed combustion conditions

    $Q_{{\rm{CH}}_4} $
    /(L·min–1
    Qacetone
    /(L·min–1
    Qair
    /(L·min–1
    Φv
    /(m·s–1
    Re
    1.16 0.0008 101.11.051004
    下载: 导出CSV

    表  2  层流预混燃具实验工况声压级

    Table  2.   SPL of laminar premixed combustion conditions

    f/HzA1/dBA2/dBA3/dBA4/dB
    50 120.1 122.5 124.1 125.6
    70 120.1 122.5 124.1
    100 120.1 122.5 124.1
    150 120.1 122.5 124.1
    下载: 导出CSV
  • [1] ARMBRUSTER W,HARDI J S,SUSLOV D,et al. Injector-driven flame dynamics in a high-pressure multi-element oxygen–hydrogen rocket thrust chamber[J]. Journal of Propulsion and Power,2019,35(3):632-644. doi: 10.2514/1.b37406
    [2] LIEUWEN T C. Unsteady Combustor Physics[M]. Cam-bridge: Cambridge University Press, 2012. doi: 10.1017/cbo9781139059961
    [3] OH S,JI H,KIM Y. FDF-based combustion instability analysis for stabilization effects of a slotted plate in a multiple flame combustor[J]. Aerospace Science and Tech-nology,2017,70:95-107. doi: 10.1016/j.ast.2017.07.045
    [4] JI S X,WANG B. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor[J]. Aerospace Science and Technology,2019,95:105409. doi: 10.1016/j.ast.2019.105409
    [5] LI L,ZHAO D. Prediction of stability behaviors of longitudinal and circumferential eigenmodes in a choked thermoacoustic combustor[J]. Aerospace Science and Tech-nology,2015,46:12-21. doi: 10.1016/j.ast.2015.06.024
    [6] WANG Q,ZHANG Y,TANG H J,et al. Visualization of diffusion flame/vortex structure and dynamics under acou-stic excitation[J]. Combustion Science and Technology,2012,184(10-11):1445-1455. doi: 10.1080/00102202.2012.693419
    [7] JANGI M,KOBAYASHI H. Droplet combustion in presence of airstream oscillation: mechanisms of enhancement and hysteresis of burning rate in microgravity at elevated pressure[J]. Combustion and Flame,2010,157(1):91-105. doi: 10.1016/j.combustflame.2009.06.004
    [8] JANGI M,SHAW B,KOBAYASHI H. Thermal-drag and transition from quasi-steady to highly-unsteady combustion of a fuel droplet in the presence of upstream velocity oscillations[J]. Flow,Turbulence and Combustion,2009,84(1):97-123. doi: 10.1007/s10494-009-9230-2
    [9] LI J,DUROX D,RICHECOEUR F,et al. Analysis of chemiluminescence,density and heat release rate fluctua-tions in acoustically perturbed laminar premixed flames[J]. Combustion and Flame,2015,162(10):3934-3945. doi: 10.1016/j.combustflame.2015.07.031
    [10] JOCHER A,FOO K K,SUN Z W,et al. Impact of acoustic forcing on soot evolution and temperature in ethylene-air flames[J]. Proceedings of the Combustion Institute,2017,36(1):781-788. doi: 10.1016/j.proci.2016.08.025
    [11] SCHULLER T,DUCRUIX S,DUROX D,et al. Modeling tools for the prediction of premixed flame transfer func-tions[J]. Proceedings of the Combustion Institute,2002,29(1):107-113. doi: 10.1016/S1540-7489(02)80018-9
    [12] LIEUWEN T. Modeling premixed combustion-acoustic wave interactions: a review[J]. Journal of Propulsion and Power,2003,19(5):765-781. doi: 10.2514/2.6193
    [13] FOO K K,SUN Z W,MEDWELL P R,et al. Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames[J]. Combustion and Flame,2017,181:270-282. doi: 10.1016/j.combustflame.2017.04.002
    [14] HASSAN M I,WU T W,SAITO K. A combination effect of reburn, post-flame air and acoustic excitation on NOx reduc-tion[J]. Fuel,2013,108:231-237. doi: 10.1016/j.fuel.2013.02.032
    [15] FOO K K,SUN Z W,MEDWELL P R,et al. Influence of nozzle diameter on soot evolution in acoustically forced laminar non-premixed flames[J]. Combustion and Flame,2018,194:376-386. doi: 10.1016/j.combustflame.2018.05.026
    [16] ZHENG L K,JI S D,ZHANG Y. Lifted and reattached behaviour of laminar premixed flame under external acoustic excitation[J]. Experimental Thermal and Fluid Science,2018,98:683-692. doi: 10.1016/j.expthermflusci.2018.07.013
    [17] McKINNEY D J,DUNN-RANKIN D. Acoustically driven extinction in a droplet stream flame[J]. Combustion Science and Technology,2000,161(1):27-48. doi: 10.1080/00102200008935810
    [18] BEISNER E,WIGGINS N D,YUE K B,et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology,2015,27(3):141-144. doi: 10.1007/s12217-015-9422-4
    [19] FRIEDMAN A N,STOLIAROV S I. Acoustic extinction of laminar line-flames[J]. Fire Safety Journal,2017,93:102-113. doi: 10.1016/j.firesaf.2017.09.002
    [20] NIEGODAJEW P,ŁUKASIAK K,RADOMIAK H,et al. Application of acoustic oscillations in quenching of gas burner flame[J]. Combustion and Flame,2018,194:245-249. doi: 10.1016/j.combustflame.2018.05.007
    [21] 阚瑞峰,夏晖晖,许振宇,等. 激光吸收光谱流场诊断技术应用研究与进展[J]. 中国激光,2018,45(9):0911005. doi: 10.3788/CJL201845.0911005

    KAN R F,XIA H H,XU Z Y,et al. Research and progress of flow field diagnosis based on laser absorption spectro-scopy[J]. Chinese Journal of Lasers,2018,45(9):0911005. doi: 10.3788/CJL201845.0911005
    [22] ALDÉN M,BOOD J,LI Z S,et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Pro-ceedings of the Combustion Institute,2011,33(1):69-97. doi: 10.1016/j.proci.2010.09.004
    [23] SJÖHOLM J,ROSELL J,LI B,et al. Simultaneous visualization of OH,CH,CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence[J]. Proceedings of the Combustion Institute,2013,34(1):1475-1482. doi: 10.1016/j.proci.2012.05.037
    [24] HARRINGTON J E,SMYTH K C. Laser-induced fluore-scence measurements of formaldehyde in a methane/air diffusion flame[J]. Chemical Physics Letters,1993,202(3-4):196-202. doi: 10.1016/0009-2614(93)85265-P
    [25] LOZANO A,YIP B,HANSON R K. Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence[J]. Experiments in Fluids,1992,13(6):369-376. doi: 10.1007/BF00223244
    [26] THURBER M C,GRISCH F,KIRBY B J,et al. Measu-rements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics[J]. Applied Optics,1998,37(21):4963-4978. doi: 10.1364/ao.37.004963
    [27] THURBER M C,HANSON R K. Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248,266,and 308 nm[J]. Applied Physics B,1999,69(3):229-240. doi: 10.1007/s003400050799
    [28] ROTHAMER D A,SNYDER J A,HANSON R K,et al. Optimization of a tracer-based PLIF diagnostic for simul-taneous imaging of EGR and temperature in IC engines[J]. Applied Physics B,2010,99(1-2):371-384. doi: 10.1007/s00340-009-3815-2
    [29] LI Z S,LI B,SUN Z W,et al. Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH,OH,and CH2O in a piloted premixed jet flame[J]. Combustion and Flame,2010,157(6):1087-1096. doi: 10.1016/j.combustflame.2010.02.017
    [30] ZHANG M,WANG J H,XIE Y L,et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames[J]. International Journal of Hydrogen Energy,2013,38(26):11421-11428. doi: 10.1016/j.ijhydene.2013.05.051
    [31] ZHANG M,WANG J H,WU J,et al. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J]. International Journal of Hydrogen Energy,2014,39(10):5176-5185. doi: 10.1016/j.ijhydene.2014.01.038
    [32] WANG J H,NIE Y H,ZHANG W J,et al. Network topology of turbulent premixed Bunsen flame at elevated pressure and turbulence intensity[J]. Aerospace Science and Technology,2019,94:105361. doi: 10.1016/j.ast.2019.105361
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2239
  • HTML全文浏览量:  212
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-11-17
  • 录用日期:  2021-11-17
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日