留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层析PIV的椭圆水翼近尾迹梢涡实验研究

赵航 佘文轩 高琪 邵雪明

赵航,佘文轩,高琪,等. 基于层析PIV的椭圆水翼近尾迹梢涡实验研究[J]. 实验流体力学,2022,36(2):82-91 doi: 10.11729/syltlx20210108
引用本文: 赵航,佘文轩,高琪,等. 基于层析PIV的椭圆水翼近尾迹梢涡实验研究[J]. 实验流体力学,2022,36(2):82-91 doi: 10.11729/syltlx20210108
ZHAO H,SHE W X,GAO Q,et al. TPIV study for near-field tip vortex from an elliptical hydrofoil[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):82-91. doi: 10.11729/syltlx20210108
Citation: ZHAO H,SHE W X,GAO Q,et al. TPIV study for near-field tip vortex from an elliptical hydrofoil[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):82-91. doi: 10.11729/syltlx20210108

基于层析PIV的椭圆水翼近尾迹梢涡实验研究

doi: 10.11729/syltlx20210108
基金项目: 国家自然科学基金(91852204);国家重点研发计划资助(2020YFA0405700)
详细信息
    作者简介:

    赵航:(1994—),男,湖南安乡人,博士研究生。研究方向:实验流体力学流动测量。通信地址:浙江省杭州市西湖区浙江大学玉泉校区航空航天学院(310027)。E-mail:hangzhao@zju.edu.cn

    通讯作者:

    E-mail:qigao@zju.edu.cn

  • 中图分类号: O352

TPIV study for near-field tip vortex from an elliptical hydrofoil

  • 摘要: 梢涡空化作为一种常见的空化现象,广泛存在于水力机械及船舶推进领域。梢涡空化初生与桨叶梢部的旋涡流动密切相关,因此有必要深入研究梢涡流场,揭示其流动特征与空化的内在联系。基于高时间解析度的层析PIV技术,在高速空泡水洞中对椭圆水翼的近尾迹梢涡流场开展了实验研究。结果表明:梢涡在近尾迹区域内存在明显的摆动现象,未考虑旋涡摆动的时间平均会在时均流场中引入额外的误差,因此在梢涡特性的定量研究中有必要滤除旋涡摆动的影响;在水翼脱落剪切层的作用下,涡核中心两侧的切向速度分布明显不对称,且在剪切层与涡核之间存在高速轴向流动区域;梢涡流场中的湍流脉动能量主要集中在涡核内部,且由法向、展向速度脉动主导。结合前人研究,发现法向、展向速度脉动是涡核内部湍流压力脉动的主要来源。
  • 图  1  椭圆水翼

    Figure  1.  Elliptical hydrofoil

    图  2  实验布置示意图

    Figure  2.  Schematic of the experimental setup

    图  3  摆动滤除前后的时均涡流场

    Figure  3.  Time-averaged flow field before and after vortex wandering correction

    图  4  近尾迹区域内涡核中心运动轨迹

    Figure  4.  Trajectory of the tip vortex core center in the near field

    图  5  近尾迹区域内梢涡摆动幅度

    Figure  5.  Amplitude of the vortex wandering in the near field

    图  6  旋涡摆动滤除前后时均速度场,α = 10°

    Figure  6.  Time-averaged velocity field before and after vortex wandering correction, α = 10°

    图  7  三维瞬时梢涡流场结构

    Figure  7.  Three-dimensional instantaneous tip vortex structure

    图  8  时均轴向速度三维分布

    Figure  8.  Three-dimensional distribution of time-averaged axial velocity

    图  9  时均轴向涡量及轴向速度云图,α = 10°

    Figure  9.  Contour of time-averaged axial vorticity and velocity, α = 10°

    图  10  梢涡时均切向速度分布,α = 10°

    Figure  10.  Distribution of time-averaged circumferential velocity, α = 10°

    图  11  湍动能云图,α = 10°

    Figure  11.  Contour of turbulence kinetic energy, α = 10°

    图  12  旋涡摆动滤除前后的法向湍动能分布,α = 10°

    Figure  12.  Distribution of turbulence kinetic energy along y axis before and after vortex wandering correction, α = 10°

    图  13  不同流向位置涡核中心各速度分量脉动强度

    Figure  13.  Velocity fluctuation in the core center at different streamwise position

    图  14  梢涡空化的不同类型

    Figure  14.  Different type of tip vortex cavitation

    表  1  涡核中心各速度分量脉动对湍动能的贡献

    Table  1.   The contribution of each velocity component fluctuation to TKE in the core center

    α/(° )Rec0.5u' 2U–2k–10.5v' 2U–2k–10.5w' 2U–2k–1
    52.48×1057.6%40.4%52.0%
    4.70×1055.7%41.6%52.7%
    102.48×10510.3%40.6%49.1%
    下载: 导出CSV
  • [1] KÜCHEMANN D. Report on the I. U. T. A. M. symposium on concentrated vortex motions in fluids[J]. Journal of Fluid Mechanics,1965,21(1):1-20. doi: 10.1017/s0022112065000010
    [2] DREYER M,DECAIX J,MÜNCH-ALLIGNÉ C,et al. Mind the gap: a new insight into the tip leakage vortex using stereo-PIV[J]. Experiments in Fluids,2014,55(11):1-13. doi: 10.1007/s00348-014-1849-7
    [3] FELLI M,FALCHI M. Propeller tip and hub vortex dynamics in the interaction with a rudder[J]. Experiments in Fluids,2011,51(5):1385-1402. doi: 10.1007/s00348-011-1162-7
    [4] 潘森森, 彭晓星. 空化机理[M]. 北京: 国防工业出版社, 2013.

    PAN S S, PENG X X. Physical mechanism of cavitation[M]. Beijing: National Defense Industry Press, 2013.
    [5] 刘玉文,徐良浩,宋明太,等. 水翼叶梢涡空化实验研究进展[J]. 实验流体力学,2020,34(5):1-11. doi: 10.11729/syltlx20190083

    LIU Y W,XU L H,SONG M T,et al. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):1-11. doi: 10.11729/syltlx20190083
    [6] McCORMICK B W Jr. On cavitation produced by a vortex trailing from a lifting surface[J]. Journal of Basic Enginee-ring,1962,84(3):369-379. doi: 10.1115/1.3657328
    [7] BILLET M L,HOLL J W. Scale effects on various types of limited cavitation[J]. Journal of Fluids Engineering,1981,103(3):405-414. doi: 10.1115/1.3240800
    [8] PAUCHET A,BRIANGON-MARJOLLET L. Recent results on tip vortex cavitation scale effects at high Reynolds numbers[J]. WIT Transactions on The Built Environment,1993(1):1-8. doi: 10.2495/NEVA930131
    [9] FRUMAN D H,CERRUTTI P,PICHON T,et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation[J]. Journal of Fluids Engineering,1995,117(1):162-169. doi: 10.1115/1.2816806
    [10] POGOZELSKI E, SHEKARRIZ A, KATZ J, et al. Three dimensional near field behavior of a tip vortex developing on an elliptic foil[C]//Proc of the 31st Aerospace Sciences Meeting. 1993: 865. doi: 10.2514/6.1993-865
    [11] STINEBRING D R,FARRELL K J,BILLET M L. The structure of a three-dimensional tip vortex at high Reynolds numbers[J]. Journal of Fluids Engineering,1991,113(3):496-503. doi: 10.1115/1.2909524
    [12] ARNDT R E A. Cavitation in vortical flows[J]. Annual Review of Fluid Mechanics,2002,34(1):143-175. doi: 10.1146/annurev.fluid.34.082301.114957
    [13] ZHANG L X,ZHANG N,PENG X X,et al. A review of studies of mechanism and prediction of tip vortex cavitation inception[J]. Journal of Hydrodynamics,2015,27(4):488-495. doi: 10.1016/s1001-6058(15)60508-x
    [14] PENNINGS P C,WESTERWEEL J,TERWISGA T J C. Flow field measurement around vortex cavitation[J]. Expe-riments in Fluids,2015,56(11):1-13. doi: 10.1007/s00348-015-2073-9
    [15] DREYER M. Mind the gap: tip leakage vortex dynamics and cavitation in axial turbines[D]. Lausanne: École Poly-technique Fédérale de Lausanne, 2015. doi: 10.5075/epfl-thesis-6611
    [16] PENG X X,XU L H,LIU Y W,et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil[J]. Journal of Hydrodynamics,2017,29(6):939-953. doi: 10.1016/s1001-6058(16)60808-9
    [17] BOSSCHERS J. An analytical and semi-empirical model for the viscous flow around a vortex cavity[J]. International Journal of Multiphase Flow,2018,105:122-133. doi: 10.1016/j.ijmultiphaseflow.2018.03.021
    [18] ASNAGHI A,SVENNBERG U,BENSOW R E. Large eddy simulations of cavitating tip vortex flows[J]. Ocean Enginee-ring,2020,195:106703. doi: 10.1016/j.oceaneng.2019.106703
    [19] CHANG N,GANESH H,YAKUSHIJI R,et al. Tip vortex cavitation suppression by active mass injection[J]. Journal of Fluids Engineering,2011,133(11):111301. doi: 10.1115/1.4005138
    [20] LEE S J,SHIN J W,ARNDT R E A,et al. Attenuation of the tip vortex flow using a flexible thread[J]. Experiments in Fluids,2017,59(1):1-12. doi: 10.1007/s00348-017-2476-x
    [21] AMINI A,SEO J,RHEE S H,et al. Mitigating tip vortex cavitation by a flexible trailing thread[J]. Physics of Fluids,2019,31(12):127103. doi: 10.1063/1.5126376
    [22] AMINI A,RECLARI M,SANO T,et al. Suppressing tip vortex cavitation by winglets[J]. Experiments in Fluids,2019,60(11):1-15. doi: 10.1007/s00348-019-2809-z
    [23] ASNAGHI A,SVENNBERG U,GUSTAFSSON R,et al. Investigations of tip vortex mitigation by using roughness[J]. Physics of Fluids,2020,32(6):065111. doi: 10.1063/5.0009622
    [24] SVENNBERG U,ASNAGHI A,GUSTAFSSON R,et al. Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness[J]. Journal of Hydrodynamics,2020,32(6):1059-1070. doi: 10.1007/s42241-020-0073-6
    [25] WANG H P,GAO Q,WEI R J,et al. Intensity-enhanced MART for tomographic PIV[J]. Experiments in Fluids,2016,57(5):1-19. doi: 10.1007/s00348-016-2176-y
    [26] SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology,2002,13(1):1-19. doi: 10.1088/0957-0233/13/1/201
    [27] ZHOU J,ADRIAN R J,BALACHANDAR S,et al. Mecha-nisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics,1999,387:353-396. doi: 10.1017/s002211209900467x
    [28] BHAGWAT M J,RAMASAMY M. Effect of tip vortex aperiodicity on measurement uncertainty[J]. Experiments in Fluids,2012,53(5):1191-1202. doi: 10.1007/s00348-012-1348-7
    [29] DEVENPORT W J,RIFE M C,LIAPIS S I,et al. The structure and development of a wing-tip vortex[J]. Journal of Fluid Mechanics,1996,312:67-106. doi: 10.1017/s0022112096001929
    [30] IUNGO G V,SKINNER P,BURESTI G. Correction of wandering smoothing effects on static measurements of a wing-tip vortex[J]. Experiments in Fluids,2009,46(3):435-452. doi: 10.1007/s00348-008-0569-2
    [31] 薛栋,潘翀,袁先士,等. 低雷诺数下翼尖涡统计特性实验研究[J]. 实验流体力学,2019,33(5):36-41. doi: 10.11729/syltlx20180129

    XUE D,PAN C,YUAN X S,et al. Experimental investiga-tion on the characteristics of wingtip vortex at low Reynolds number[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):36-41. doi: 10.11729/syltlx20180129
    [32] HEYES A L, JONES R F, SMITH D A R. Wandering of wing-tip vortices[C]//Proceedings of 12th international sym-posium on the applications of laser techniques to fluid me-chanics. 2004.
    [33] BERESH S J,HENFLING J F,SPILLERS R W. Meander of a fin trailing vortex and the origin of its turbulence[J]. Experiments in Fluids,2010,49(3):599-611. doi: 10.1007/s00348-010-0825-0
    [34] 邱思逸,程泽鹏,向阳,等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报,2019,40(8):122712.

    QIU S Y,CHENG Z P,XIANG Y,et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):122712.
    [35] LEE T,PEREIRA J. Nature of wakelike and jetlike axial tip vortex flows[J]. Journal of Aircraft,2010,47(6):1946-1954. doi: 10.2514/1.c000225
    [36] SKINNER S N,GREEN R B,ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids,2020,32(9):095102. doi: 10.1063/5.0016353
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  2309
  • HTML全文浏览量:  281
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-02
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日