留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热声解耦方法的燃烧不稳定性预测

高宇鹏 李俊杰 刘巍 李敬轩

高宇鹏,李俊杰,刘巍,等. 基于热声解耦方法的燃烧不稳定性预测[J]. 实验流体力学,2022,36(1):11-18 doi: 10.11729/syltlx20210078
引用本文: 高宇鹏,李俊杰,刘巍,等. 基于热声解耦方法的燃烧不稳定性预测[J]. 实验流体力学,2022,36(1):11-18 doi: 10.11729/syltlx20210078
GAO Y P,LI J J,LIU W,et al. Prediction of the combustion instability based on the thermos-acoustic decoupling method[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):11-18. doi: 10.11729/syltlx20210078
Citation: GAO Y P,LI J J,LIU W,et al. Prediction of the combustion instability based on the thermos-acoustic decoupling method[J]. Journal of Experiments in Fluid Mechanics, 2022,36(1):11-18. doi: 10.11729/syltlx20210078

基于热声解耦方法的燃烧不稳定性预测

doi: 10.11729/syltlx20210078
详细信息
    作者简介:

    高宇鹏:(1991—),男,北京朝阳人,博士研究生。研究方向:钝体稳燃火焰,燃烧不稳定性。通信地址:北京市海淀区学院路37号北京航空航天大学宇航学院(100191)。E-mail:by1715104@buaa.edu.cn

    通讯作者:

    E-mail:lijunjie1975@126.com

  • 中图分类号: TK49

Prediction of the combustion instability based on the thermos-acoustic decoupling method

  • 摘要: 大型空气加热器易发生燃烧不稳定现象,造成加热器不能按预想状态工作,甚至失效。由于难以通过试验获得加热器燃烧室内部的精确参数,因此数值仿真是预测燃烧不稳定性的重要手段。通过对燃烧室内部燃烧-声学解耦的方式,分别计算火焰对声学扰动的响应和声学系统在热源扰动下的响应,将声学扰动下的燃烧响应表征为火焰传递函数,最终可获得燃烧室的不稳定模态频率并对其是否发生不稳定燃烧进行预测。结果表明:某型空气加热器的模态频率为1389.9 Hz,且在声学模态上是稳定的;预测结果与试验结果符合较好,证明该方法具备良好的预测能力。
  • 图  1  喷管的声学模型

    Figure  1.  The acoustic model of nozzle

    图  2  加热器各部件示意图

    Figure  2.  Schematic diagram of the heater components

    图  3  燃烧室模型示意图

    Figure  3.  Schematic diagram of combustion chamber model

    图  4  燃烧室网格划分示意图

    Figure  4.  Divided mesh of combustion chamber model

    图  5  声波反射与声学边界阻抗示意图

    Figure  5.  Schematic diagram of sound reflection and acoustic boundary impedance

    图  6  声学反射系数的幅频、相频特性曲线

    Figure  6.  Amplitude frequency and phase frequency characteristic curve of acoustic reflection coefficient

    图  7  不同截面处的总温云图

    Figure  7.  Total temperature contour map at different cross-sections

    图  8  不同振幅下的燃烧室内热释放率云图及流线图

    Figure  8.  Contour of heat release rate and streamline inside the com- bustion chamber under different amplitudes

    图  9  火焰热释放率随时间变化曲线

    Figure  9.  Dimensionless flame heat release rate vs. time curve

    图  10  火焰传递函数的幅值和相位

    Figure  10.  The amplitude and phase of the flame transfer function

    图  11  不同扰动振幅下,燃烧室最不稳定模态的总声压场

    Figure  11.  The total sound pressure field of the most unstable mode in the combustion chamber

    表  1  预混燃料入口工况

    Table  1.   The working conditions of premixed fuel at the inlet

    组分流量/(kg·s–1)温度/K压力/MPa
    氧气9.6430010.2
    乙醇28.9230010.2
    下载: 导出CSV

    表  2  不同模态下 ${{k}_{{m,j}}}$ 的值

    Table  2.   The value of ${k_{m,j}}$ in different modes

    m=0m=1m=2m=3
    j=1 0 0.2930 0.4861 0.6686
    j=2 0.6098 0.8485 1.0673 1.2757
    j=3 1.1166 1.3586 1.5867 1.8058
    j=4 1.6192 1.8631 2.0961 2.3214
    下载: 导出CSV

    表  3  燃烧室各不稳定模态频率估计值

    Table  3.   Estimated frequency of each unstable mode of the combust-ion chamber

    单位:Hz
    m=0,j=1m=1,j=1m=2,j=1m=3,j=1
    n=0 0 1313 2178 2732
    n=1 504 1406 2235 2778
    n=2 1001 1665 2400 2912
    n=3 1512 2002 2651 3123
    下载: 导出CSV
  • [1] OEFELEIN J C,YANG V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines[J]. Journal of Propulsion and Power,1993,9(5):657-677. doi: 10.2514/3.23674
    [2] 王迪,聂万胜,周思引,等. 单喷嘴模型发动机纵向高频燃烧不稳定性实验分析[J]. 实验流体力学,2018,32(2):18-23,73. doi: 10.11729/syltlx20170162

    WANG D,NIE W S,ZHOU S Y,et al. Experimental analysis on the longitudinal high frequency combustion instability of a single-element model engine[J]. Journal of Experiments in Fluid Mechanics,2018,32(2):18-23,73. doi: 10.11729/syltlx20170162
    [3] RICHECOEUR F,SCOUFLAIRE P,DUCRUIX S,et al. High-frequency transverse acoustic coupling in a multiple-injector cryogenic combustor[J]. Journal of Propulsion and Power,2006,22(4):790-799. doi: 10.2514/1.18539
    [4] RICHECOEUR F,DUCRUIX S,SCOUFLAIRE P,et al. Experimental investigation of high-frequency combustion in-stabilities in liquid rocket engine[J]. Acta Astronautica,2008,62(1):18-27. doi: 10.1016/j.actaastro.2006.12.034
    [5] RICHECOEUR F,DUCRUIX S,SCOUFLAIRE P,et al. Effect of temperature fluctuations on high frequency acou-stic coupling[J]. Proceedings of the Combustion Institute,2009,32(2):1663-1670. doi: 10.1016/j.proci.2008.05.068
    [6] BIBIK O, LUBARSKY E, SHCHERBIK D, et al. Rotational traveling of tangential wave in LRE combustor simulator [C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008. doi: 10.2514/6.2008-1001
    [7] MÉRY Y,HAKIM L,SCOUFLAIRE P,et al. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations[J]. Comptes Rendus Mécanique,2013,341(1-2):100-109. doi: 10.1016/j.crme.2012.10.013
    [8] SLIPHORST M,KNAPP B,GROENING S,et al. Com- bustion instability-coupling mechanisms between liquid oxygen/methane spray flames and acoustics[J]. Journal of Propulsion and Power,2012,28(6):1339-1350. doi: 10.2514/1.B34339
    [9] URBANO A,SELLE L,STAFFELBACH G,et al. Explo- ration of combustion instability triggering using Large Eddy Simulation of a multiple injector liquid rocket engine[J]. Combustion and Flame,2016,169:129-140. doi: 10.1016/j.combustflame.2016.03.020
    [10] SHIMIZU T,MORII Y,HORI D. Numerical study on intense tangential oscillation in a simulated liquid rocket chamber[J]. AIAA Journal,2014,52(8):1795-1800. doi: 10.2514/1.J052627
    [11] STAFFELBACH G,GICQUEL L Y M,BOUDIER G,et al. Large Eddy Simulation of self excited azimuthal modes in annular combustors[J]. Proceedings of the Combustion Institute,2009,32(2):2909-2916. doi: 10.1016/j.proci.2008.05.033
    [12] 王方,王煜栋,姜胜利,等. AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报,2021,42(12):1-13. doi: 10.7525/S1000-6893.2021.25003

    WANG F,WANG Y D,JIANG S L,et al. Development and testing of AECSC-JASMIN turbulent combustion simulation software[J]. Acta Aeronautica et Astronautica Sinica,2021,42(12):1-13. doi: 10.7525/S1000-6893.2021.25003
    [13] 张志浩,刘潇,赵铁铮,等. 旋流预混燃烧室燃烧特性研究[J]. 热科学与技术,2021,20(2):171-177.

    ZHANG Z H,LIU X,ZHAO T Z,et al. Investigation on combustion characteristics of swirl premixed combustor[J]. Journal of Thermal Science and Technology,2021,20(2):171-177.
    [14] 夏朝阳,宛鹏翔,韩省思,等. 基于FGM的旋流预混燃烧室超大涡模拟[J]. 工程热物理学报,2021,42(5):1334-1341.

    XIA Z Y,WAN P X,HAN X S,et al. Very large eddy simulation of swirling premixed combustor based on FGM [J]. Journal of Engineering Thermophysics,2021,42(5):1334-1341.
    [15] LI J X,XIA Y,MORGANS A S,et al. Numerical prediction of combustion instability limit cycle oscillations for a com- bustor with a long flame[J]. Combustion and Flame,2017,185:28-43. doi: 10.1016/j.combustflame.2017.06.018
    [16] LI J X, MORGANS A S, XIA Y, et al. The open source combustion instability low order simulator[EB/OL]. [2021-08-02]. https://www.oscilos.com/index.html.
    [17] DURAN I,MOREAU S. Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion[J]. Journal of Fluid Mechanics,2013,723:190-231. doi: 10.1017/jfm.2013.118
    [18] MAGNUS W. On the exponential solution of differential equations for a linear operator[J]. Communications on Pure and Applied Mathematics,1954,7(4):649-673. doi: 10.1002/cpa.3160070404
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  223
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-12-03
  • 录用日期:  2021-12-07
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日