留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光电子激发标记测速技术的剪切流场速度测量

杨文斌 陈力 闫博 王朝宗 周江宁 陈爽 母金河 王建新 邱荣

杨文斌,陈力,闫博,等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学,2022,36(4):94-102 doi: 10.11729/syltlx20210060
引用本文: 杨文斌,陈力,闫博,等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学,2022,36(4):94-102 doi: 10.11729/syltlx20210060
YANG W B,CHEN L,YAN B,et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):94-102. doi: 10.11729/syltlx20210060
Citation: YANG W B,CHEN L,YAN B,et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):94-102. doi: 10.11729/syltlx20210060

基于飞秒激光电子激发标记测速技术的剪切流场速度测量

doi: 10.11729/syltlx20210060
基金项目: 国家重点研发计划(2020YFA0405700)
详细信息
    作者简介:

    杨文斌:(1991—),男,云南大理人,博士,工程师。研究方向:面向复杂流场的非接触测量技术研究,光谱诊断。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:wbyang91@163.com

    通讯作者:

    E-mail:chenshuang56@126.com

  • 中图分类号: O433

Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging

  • 摘要: 流场速度测量精度会影响飞行器气动性能的预测精度,常用的基于激光技术的非接触式速度测量方法已不能完全满足流场速度高精度测量需求,飞秒激光电子激发标记(Femtosecond Laser Electronic Excitation Tagging,FLEET)测速技术有望解决这一问题。利用钛蓝宝石飞秒激光器搭建了FLEET测速系统,分析了流场中的N2分子在飞秒激光激发下的电子荧光光谱;基于FLEET测速系统,在射流剪切装置上开展了剪切流场速度测量实验,通过调节高速通道的流量/压力获得了不同速度分布的流场,开展了不同流场速度(30~170 m/s)下的FLEET测速实验;研究了延迟时间对流场速度测量的影响。结果表明:随着延迟时间增加,荧光图像会由于等离子体的扩散而发生弥散;FLEET荧光信号衰减会使信噪比有所降低,但不同延迟时间下得到的流场速度分布形态基本一致;FLEET技术在有效荧光寿命范围内具有足够的准确性应用于剪切流场速度测量。
  • 图  1  FLEET技术N2标记物理过程及图像

    Figure  1.  FLEET nitrogen tagging mechanism and images

    图  2  FLEET测速系统示意图

    Figure  2.  Schematic diagram of FLEET experimental setup

    图  3  剪切流场喷嘴结构示意图

    Figure  3.  Schematic diagram of shear flow nozzle

    图  4  FLEET荧光信号250~850 nm波段光谱

    Figure  4.  The spectrum from 250 nm to 850 nm of FLEET signal

    图  5  不同延迟下的剪切流场FLEET荧光信号

    Figure  5.  FLEET signal of shear flow with different delays.

    图  6  实测FLEET荧光信号及拟合结果

    Figure  6.  Measured FLEET signal and corresponding fitting results

    图  7  工况1不同延迟下的FLEET信号及速度测量结果

    Figure  7.  FLEET signal and corresponding calculated velocities with different delays of case 1

    图  8  工况5不同延迟下的FLEET信号及速度测量结果

    Figure  8.  FLEET signal and corresponding calculated velocities with different delays of case 5

    图  9  剪切流场不同高度速度测量结果

    Figure  9.  Measured velocities with different heights in shear flow

    图  10  剪切流场不同高度的速度分布及剪切层厚度

    Figure  10.  Velocity distribution and shear layer thickness with different heights in shear flow

    图  11  不同射流速度时y = 2 mm处的剪切流场速度

    Figure  11.  Velocity distribution at 2 mm with different jet velocities

    图  12  剪切流场速度分布仿真结果

    Figure  12.  Simulated velocity distribution of shear flow

    图  13  剪切流场速度分布仿真结果与FLEET测量结果对比

    Figure  13.  Comparison between simulation velocity distributions and FLEET measurement results of shear flow

    表  1  剪切流场FLEET测速中的实验参数

    Table  1.   Experimental parameters of FLEET velocimetry in shear flow

    工况测量位置/ mm流量/压力
    通道1通道2
    1 2 10 L/min 10 L/min
    2 4 10 L/min 10 L/min
    3 8 10 L/min 10 L/min
    4 15 10 L/min 10 L/min
    5 2 10 L/min 0.5 MPa
    6 7 10 L/min 0.5 MPa
    7 12 10 L/min 0.5 MPa
    8 2 10 L/min 0.3 MPa
    下载: 导出CSV
  • [1] 杨富荣,陈力,闫博,等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学,2018,32(3):82-86. doi: 10.11729/syltlx20170103

    YANG F R,CHEN L,YAN B,et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic techni-que[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):82-86. doi: 10.11729/syltlx20170103
    [2] 易仕和,陈植,朱杨柱,等. (高)超声速流动试验技术及研究进展[J]. 航空学报,2015,36(1):98-119. doi: 10.7527/S1000-6893.2014.0230

    YI S H,CHEN Z,ZHU Y Z,et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica,2015,36(1):98-119. doi: 10.7527/S1000-6893.2014.0230
    [3] EDWARDS M R, LIMBACH C, MILES R B, et al. Limitations on high-spatial resolution measurements of turbulence using femtosecond laser tagging[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1219
    [4] 刘洪,陈方,励孝杰,等. 高速复杂流动PIV技术研究实践与挑战[J]. 实验流体力学,2016,30(1):28-42. doi: 10.11729/syltlx20150069

    LIU H,CHEN F,LI X J,et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics,2016,30(1):28-42. doi: 10.11729/syltlx20150069
    [5] 李中华,李志辉,蒋新宇,等. NPLS流场测量技术在高超声速风洞中纳米粒子跟随性数值仿真[J]. 实验流体力学,2017,31(1):73-79. doi: 10.11729/syltlx20160094

    LI Z H,LI Z H,JIANG X Y,et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2017,31(1):73-79. doi: 10.11729/syltlx20160094
    [6] PITZ R W,LAHR M D,DOUGLAS Z W,et al. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics,2005,44(31):6692-6700. doi: 10.1364/ao.44.006692
    [7] SÁNCHEZ-GONZÁLEZ R,SRINIVASAN R,BOWERSOX R D W,et al. Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique[J]. Optics Letters,2011,36(2):196-198. doi: 10.1364/OL.36.000196
    [8] CHEN L,YANG F R,SU T,et al. High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering[J]. Chinese Physics B,2017,26(2):025205. doi: 10.1088/1674-1056/26/2/025205
    [9] MICHAEL J B,EDWARDS M R,DOGARIU A,et al. Femtosecond laser electronic excitation tagging for quan-titative velocity imaging in air[J]. Applied Optics,2011,50(26):5158-5162. doi: 10.1364/AO.50.005158
    [10] EDWARDS M R. Femtosecond laser electronic tagging[D]. Princeton: Princeton University, 2012.
    [11] CALVERT N D. Femtosecond Laser Electronic Excitation Tagging for aerodynamic and thermodynamic measurements [D]. Princeton: Princeton University, 2016.
    [12] BURNS R, DANEHY P M, JONES S B, et al. Application of FLEET velocimetry in the NASA langley 0.3-meter transonic cryogenic tunnel[C]//Proc of the 31st AIAA Ae-rodynamic Measurement Technology and Ground Testing Conference. 2015. doi: 10.2514/6.2015-2566
    [13] BURNS R, DANEHY P, PETERS C J. Multiparameter flowfield measurements in high-pressure, cryogenic environ-ments using femtosecond lasers[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-3246
    [14] BURNS R A, DANEHY P M. FLEET velocimetry measure-ments on a transonic airfoil[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0026
    [15] DOGARIU L E, DOGARIU A, MILES R B, et al. Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC tunnel 9 using FLEET[C]//Proc of the 2018 AIAA Aerospace Sciences Meeting. 2018. doi: 10.2514/6.2018-1769
    [16] ZHANG Y B, RICHARDSON D R, BERESH S J, et al. Hypersonic wake measurements behind a slender cone using FLEET velocimetry[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3381
    [17] CALVERT N, DOGARIU A, MILES R B. FLEET bound-ary layer velocity profile measurements[C]//Proc of the 44th AIAA Plasmadynamics and Lasers Conference. 2013. doi: 10.2514/6.2013-2762
    [18] JIANG N, HALLS B R, STAUFFER H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry[J]. Optics Letters, 2016, 41(10): 2225-2228. doi: 10.1364/OL.41.002225
    [19] JIANG N, HALLS B R, STAUFFER H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET) velocimetry in flow and combustion diagnostics[C]//Proc of the 32nd AIAA Aero-dynamic Measurement Technology and Ground Testing Con-ference. 2016. doi: 10.2514/6.2016-3250
    [20] 张大源,高强,李博,等. FLIPS技术同时测量流场速度与混合分数[J]. 工程热物理学报,2020,41(6):1544-1549.

    ZHANG D Y,GAO Q,LI B,et al. Simultaneous velocity and mixture fraction measurements in flow fields with FLIPS technique[J]. Journal of Engineering Thermophy-sics,2020,41(6):1544-1549.
    [21] LI B,ZHANG D Y,LI X F,et al. Femtosecond laser-induced cyano chemiluminescence in methane-seeded ni-trogen gas flows for near-wall velocimetry[J]. Journal of Physics D: Applied Physics,2018,51(29):295102. doi: 10.1088/1361-6463/aacc97
    [22] 朱志峰,李博,高强,等. 飞秒激光电子激发标记测速方法及其在超声速射流中的试验验证[J]. 空气动力学学报,2020,38(5):880-886. doi: 10.7638/kqdlxxb-2018.0150

    ZHU Z F,LI B,GAO Q,et al. Femtosecond laser electronic excitation tagging for velocity measurement in supersonic jet[J]. Acta Aerodynamica Sinica,2020,38(5):880-886. doi: 10.7638/kqdlxxb-2018.0150
    [23] YANG W B,ZHOU J N,CHEN L,et al. Temporal characterization of heating in femtosecond laser filamen-tation with planar Rayleigh scattering[J]. Optics Express,2021,29(10):14883-14893. doi: 10.1364/OE.418654
    [24] LIMBACH C. Characterization of nanosecond, femtosecond and dual pulse laser energy addition in air for flow control and diagnostic applications[D]. Princeton: Princeton Univer-sity, 2015.
    [25] 王春艳. 激光测量中光条关键技术研究[D]. 长春: 吉林大学, 2014.

    WANG C Y. Research on key technologies of light stripe in laser measurement[D]. Changchun: Jilin University, 2014.
    [26] LAVOIE P,IONESCU D,PETRIU E M. 3D object model recovery from 2D images using structured light[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(2):437-443. doi: 10.1109/TIM.2004.823320
    [27] STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(2):113-125. doi: 10.1109/34.659930
    [28] LAUX C O,SPENCE T G,KRUGER C H,et al. Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Science and Technology,2003,12(2):125-138. doi: 10.1088/0963-0252/12/2/301
    [29] EDWARDS M, DOGARIU A, MILES R. Simultaneous temperature and velocity measurement in unseeded air flows with FLEET[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-43
    [30] 倪章松,张军,王茂,等. 开口风洞剪切层流场特性[J]. 航空动力学报,2020,35(2):244-251. doi: 10.13224/j.cnki.jasp.2020.02.003

    NI Z S,ZHANG J,WANG M,et al. Characteristics of shear-layer flow field of open-jet wind tunnels[J]. Journal of Aerospace Power,2020,35(2):244-251. doi: 10.13224/j.cnki.jasp.2020.02.003
    [31] 张军,王勋年,张俊龙,等. 开口风洞声阵列测量的剪切层修正方法[J]. 实验流体力学,2018,32(4):39-46. doi: 10.11729/syltlx20180013

    ZHANG J,WANG X N,ZHANG J L,et al. Shear layer correction methods for open-jet wind tunnel phased array test[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):39-46. doi: 10.11729/syltlx20180013
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  255
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-28
  • 录用日期:  2021-12-16
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-09-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日