留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低旋流数旋进射流流动特性的PIV实验研究

付豪 何创新 刘应征

付豪, 何创新, 刘应征. 低旋流数旋进射流流动特性的PIV实验研究[J]. 实验流体力学, 2021, 35(3): 39-45. doi: 10.11729/syltlx20200129
引用本文: 付豪, 何创新, 刘应征. 低旋流数旋进射流流动特性的PIV实验研究[J]. 实验流体力学, 2021, 35(3): 39-45. doi: 10.11729/syltlx20200129
FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. doi: 10.11729/syltlx20200129
Citation: FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. doi: 10.11729/syltlx20200129

低旋流数旋进射流流动特性的PIV实验研究

doi: 10.11729/syltlx20200129
基金项目: 

上海市自然科学基金 20ZR1425700

详细信息
    作者简介:

    付豪(1995-), 男, 湖北武汉人, 博士研究生。研究方向: 流场PIV测量技术与射流研究。通信地址: 上海交通大学机械与动力学院C楼315(200240)。E-mail: fuhao950823@sjtu.edu.cn

    通讯作者:

    何创新, E-mail: chuangxin.he@sjtu.edu.cn

  • 中图分类号: V211.71

PIV experimental study on flow characteristics of a low swirl number precessing jet

  • 摘要: 采用粒子图像测速技术,研究了当雷诺数Re=4.5×104时低旋流数旋进射流的流动特性。针对3种不同旋流数(S=0、0.26和0.41),对比分析了时均流向速度场、流向速度脉动强度场以及时均涡量场的变化规律。实验测量结果表明:随着旋流数的增加,流向速度大小及其脉动强度沿流向衰减加剧,而射流中心线上的速度脉动强度增强;因腔体壁面空间限制而产生的回流区向上游移动且尺度变小;外剪切层中旋涡的流向发展急剧衰减而内剪切层内的旋涡几乎不受影响。此外,结合速度谱和典型时刻的瞬态流场特征可知,旋流数增大后,旋进频率增大,而旋进现象发生的起始位置向上游移动,使得旋进偏转角度增大。
  • 图  1  实验装置示意图和一些重要的几何尺寸

    Figure  1.  Schematic diagram of the experimental setup and some important geometric sizes

    图  2  旋流数S=0时4个典型时刻的流向速度云图

    Figure  2.  Contour plot of streamwise velocity at four typical instants at swirl number S=0

    图  3  旋流数S=0.26时4个典型时刻的流向速度云图

    Figure  3.  Contour plot of streamwise velocity at four typical instants at swirl number S=0.26

    图  4  旋流数S=0.41时4个典型时刻的流向速度云图

    Figure  4.  Contour plot of streamwise velocity at four typical instants at swirl number S=0.41

    图  5  时均流线图及流向速度云图

    Figure  5.  Streamline pattern and contour plot of time-averaged streamwise velocity

    图  6  流向速度脉动强度云图

    Figure  6.  Contour plot of streamwise velocity fluctuation intensity

    图  7  时均涡量分布云图

    Figure  7.  Contour plot of time-averaged vorticity field

    图  8  时均流向速度分布

    Figure  8.  Profiles of time-averaged streamwise velocity

    图  9  流向速度脉动强度分布

    Figure  9.  Profiles of streamwise velocity fluctuation intensity

    图  10  流向速度的功率谱密度

    Figure  10.  Power spectral density (PSD) of streamwise velocity

  • [1] NATHAN G J, MANIAS C G. The role of process and flame interaction in reducing NOx emissions[C]//Proceedings of the Institute of Energy's Second International Conference on Combustion & Emissions Control. 1995. doi: 10.1016/b978-0-902597-49-5.50032-9
    [2] NEWBOLD G J R, NATHAN G J, NOBES D S, et al. Measurement and prediction of NOx emissions from unconfined propane flames from turbulent-jet, bluff-body, swirl, and precessing jet burners[J]. Proceedings of the Combustion Institute, 2000, 28(1): 481-487. doi: 10.1016/S0082-0784(00)80246-5
    [3] DENG Y B, WU H W, SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineering, 2017, 110: 171-180. doi: 10.1016/j.applthermaleng.2016.08.169
    [4] COLORADO A, MCDONELL V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J]. Applied Thermal Engineering, 2018, 130: 1507-1519. doi: 10.1016/j.applthermaleng.2017.11.047
    [5] TONG Y H, YU S B, LIU X, et al. Experimental study on dynamics of a confined low swirl partially premixed methane-hydrogen-air flame[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27400-27415. doi: 10.1016/j.ijhydene.2017.09.066
    [6] LUXTON R E, NATHAN G J. Mixing fluids: Australian, PCT/AU88/0014. 1987.
    [7] NATHAN G J. The enhanced mixing burner[D]. Adelaide: The University of Adelaide, 1988.
    [8] NEWBOLD G. Mixing and combustion inprecessing jet flows[D]. Adelaide: The University of Adelaide, 1998.
    [9] NATHAN G J, HILL S J, LUXTON R E. An axisymmetric 'fluidic' nozzle to generate jet precession[J]. Journal of Fluid Mechanics, 1998, 370: 347-380. doi: 10.1017/s002211209800202x
    [10] WONG C Y, NATHAN G J, KELSO R M. The naturally oscillating flow emerging from a fluidicprecessing jet nozzle[J]. Journal of Fluid Mechanics, 2008, 606: 153-188. doi: 10.1017/s0022112008001699
    [11] WONG C Y, LANSPEARY P V, NATHAN G J, et al. Phase-averaged velocity in a fluidicprecessing jet nozzle and in its near external field[J]. Experimental Thermal and Fluid Science, 2003, 27(5): 515-524. doi: 10.1016/S0894-1777(02)00265-0
    [12] CAFIERO G, CEGLIA G, DISCETTI S, et al. On the three-dimensionalprecessing jet flow past a sudden expansion[J]. Experiments in Fluids, 2014, 55(2): 1-13. doi: 10.1007/s00348-014-1677-9
    [13] CEGLIA G, CAFIERO G, ASTARITA T. Experimental investigation on the three-dimensional organization of the flow structures inprecessing jets by tomographic PIV[J]. Experimental Thermal and Fluid Science, 2017, 89: 166-180. doi: 10.1016/j.expthermflusci.2017.08.008
    [14] GUPTA A K, LILLEY D G, SYRED N. Swirl flows[M]. Tunbridge Wells: Abacus Press, 1984.
    [15] FROUD D, O'DOHERTY T, SYRED N. Phase averaging of theprecessing vortex core in a swirl burner under piloted and premixed combustion conditions[J]. Combustion and Flame, 1995, 100(3): 407-412. doi: 10.1016/0010-2180(94)00167-Q
    [16] DELLENBACK P A, METZGER D E, NEITZEL G P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion[J]. AIAA Journal, 1988, 26(6): 669-681. doi: 10.2514/3.9952
    [17] HE C X, GAN L, LIU Y Z. The formation and evolution of turbulent swirling vortex rings generated by axial swirlers[J]. Flow, Turbulence and Combustion, 2020, 104(4): 795-816. doi: 10.1007/s10494-019-00076-2
    [18] MI J, NATHAN G J. Self-excited jet-precessionStrouhal number and its influence on downstream mixing field[J]. Journal of Fluids and Structures, 2004, 19(6): 851-862. doi: 10.1016/j.jfluidstructs.2004.04.006
  • 加载中
图(10)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  172
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-22
  • 修回日期:  2020-11-09
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日