留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3 m×2 m结冰风洞热流场品质提高及评估

郭向东 张平涛 张珂 郭奇灵 郭龙

郭向东,张平涛,张 珂,等. 3 m×2 m结冰风洞热流场品质提高及评估[J]. 实验流体力学,2021,35(4):41-51 doi: 10.11729/syltlx20200118
引用本文: 郭向东,张平涛,张 珂,等. 3 m×2 m结冰风洞热流场品质提高及评估[J]. 实验流体力学,2021,35(4):41-51 doi: 10.11729/syltlx20200118
GUO X D,ZHANG P T,ZHANG K,et al. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):41-51. doi: 10.11729/syltlx20200118
Citation: GUO X D,ZHANG P T,ZHANG K,et al. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):41-51. doi: 10.11729/syltlx20200118

3 m×2 m结冰风洞热流场品质提高及评估

doi: 10.11729/syltlx20200118
详细信息
    作者简介:

    郭向东:(1989-),男,陕西咸阳人,工程师,硕士。研究方向:结冰空气动力学,两相流数值模拟。通信地址:四川省绵阳市涪城区二环路南段6号13信箱(621000)。E-mail:easterkuo@163.com

    通讯作者:

    E-mail:308462477@qq.com

  • 中图分类号: V221.3

Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel

  • 摘要: 结冰风洞热流场品质符合性是大型结冰风洞适航应用的基础。为明晰制冷系统性能升级优化对3 m×2 m结冰风洞热流场品质的影响,开展了热流场符合性验证试验,评估了热交换器出口和试验段两位置处热流场品质,给出了气流总温修正关系,形成了热流场控制包线。结果表明:热交换器出口和试验段模型区内热流场品质在主要试验工况下均优于SAE ARP5905指标;与升级优化前(2019年)试验结果对比,优化后试验段模型区内热流场空间均匀性显著增强,尤其在高风速、低总温工况下,模型区内均未出现超标的非均匀峰值点。结冰风洞制冷系统的升级优化显著扩展了3 m×2 m结冰风洞主试验段热流场控制包线,增强了结冰风洞试验模拟能力。
  • 图  1  3 m×2 m结冰风洞

    Figure  1.  The CARDC icing wind tunnel

    图  2  结冰风洞总温控制探针

    Figure  2.  The total temperature operating probe in CARDC icing wind tunnel

    图  3  结冰风洞总温控制探针测量位置示意图

    Figure  3.  The measured positions of total temperature operating probes in CARDC icing wind tunnel

    图  4  温度格栅装置

    Figure  4.  The temperature grid device

    图  5  温度格栅测点位置矩阵

    Figure  5.  The position matrix of measured points in the temperature grid device

    图  6  格栅总温探针

    Figure  6.  Total temperature probe and temperature grid

    图  7  热交换器出口气流总温空间分布云图

    Figure  7.  The spatial distribution of airflow total temperature at the exit of the heat exchanger

    图  8  热交换器出口气流总温空间偏差标准差和最大绝对值

    Figure  8.  The standard deviation and maximum absolute value of the spatial deviation of the airflow total temperature at the exit of the heat exchanger

    图  9  热交换器出口气流总温时间偏差变化曲线

    Figure  9.  The variation profiles of the temporal deviation of airflow total temperature at the exit of the heat exchanger

    图  10  热交换器出口气流总温时间偏差标准差和最大绝对值

    Figure  10.  The standard deviation and maximum absolute value of the temporal deviation of airflow total temperature at the exit of the heat exchanger

    图  11  试验段气流总温空间分布云图

    Figure  11.  The spatial distribution of airflow total temperature in the test section

    图  12  试验段模型区气流总温空间偏差标准差和最大绝对值

    Figure  12.  The standard deviation and maximum absolute value of the spatial deviation of airflow total temperature in the model area of test section

    图  13  试验段中心线处气流总温时间偏差变化曲线

    Figure  13.  The variation profiles of the temporal deviation of airflow total temperature in the centerline of test section

    图  14  试验段中心线处气流总温时间偏差标准差和最大绝对值

    Figure  14.  The standard deviation and maximum absolute value of the temporal deviation of airflow total temperature in the centerline of test section

    图  15  试验段中心线处气流总温修正关系和不确定度

    Figure  15.  The correction relationship and uncertainty of the airflow total temperature in the centerline of test section

    图  16  3 m×2 m结冰风洞主试验段热流场控制包线

    Figure  16.  The thermal flow field operating envelop of CARDC icing wind tunnel in the main test section

    表  1  试验段尺寸参数和模拟气流速度范围

    Table  1.   The test section size parameters and simulation airspeed range

    Test sectionDimensionAirspeed/
    (m·s–1
    Height/mWidth/mLength/m
    Main2.03.06.521~210
    Secondary3.24.89.08~78
    High speed1.52.04.526~256
    下载: 导出CSV

    表  2  结冰风洞热流场品质指标[16]

    Table  2.   The quality index of thermodynamic flow field of icing wind tunnel[16]

    ItemsStatic air temperature
    Ts < –30 ℃–30 ℃ < Ts < 5 ℃
    Measurement instrumentation
    maximum uncertainty
    ±2.0 ℃±0.5 ℃
    Spatial uniformity±2.0 ℃±1.0 ℃
    Temporal stability±2.0 ℃±0.5 ℃
    下载: 导出CSV

    表  3  气流总温试验工况

    Table  3.   Test conditions of airflow total temperature

    ParameterValue
    Tt /℃–30, –25, –20, –15, –10, –5, 0, 5
    vTS /(m·s–140, 60, 80, 100, 120, 140
    下载: 导出CSV
  • [1] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.

    LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016.
    [2] KING-STEEN L E, IDE R F, Van ZANTE J F, et al. NASA Glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results[R]. NASA/TM-2015-218758, 2015.
    [3] ESPOSITO B M, RAGNI A, FERRIGNO F, et al. Cloud calibration update of the CIRA icing wind tunnel[R]. SAE Technical Paper Series 2003-01-2312, 2003. doi: 10.4271/2003-01-2132
    [4] 郭向东,张平涛,赵献礼,等. 大型结冰风洞热流场符合性验证[J]. 实验流体力学,2020,34(5):79-88. doi: 10.11729/syltlx20190113

    GUO X D,ZHANG P T,ZHAO X L,et al. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):79-88. doi: 10.11729/syltlx20190113
    [5] IRVINE T, KEVDZIJA S, SHELDON D, et al. Overview of the icing and flow quality improvements program for the NASA-Glenn icing research tunnel[R]. AIAA-2001-0229, 2001. doi: 10.2514/6.2001-229
    [6] GONSALEZ J, ARRINGTON E, III M C. Quality surveys of the NASA Glenn icing research tunnel(2000 tests)[R]. AIAA-2001-0232, 2001. doi: 10.2514/6.2001-232
    [7] GONSALEZ J, ARRINGTON E, CURRY M. Thermal calibration of the NASA Glenn icing research tunnel (2000 tests)[R]. AIAA-2001-0233, 2001. doi: 10.2514/6.2001-233
    [8] ARRINGTON E, GONSALEZ J. Improvements to the total temperature calibration of the NASA Glenn icing research tunnel[R]. AIAA 2005-4276, 2005. doi: 10.2514/6.2005-4276
    [9] OLDENBURG J, IDE R, DEL ROSO R, et al. Improvements to the NASA Glenn icing research tunnel's air temperature measurement system[R]. AIAA 2006-1222, 2006. doi: 10.2514/6.2006-1222
    [10] PASTOR-BARSI C, ARRINGTON A. Aero-thermal calibration of the NASA Glenn icing research tunnel (2012 test)[R]. AIAA 2012-2934, 2012. doi: 10.2514/6.2012-2934
    [11] STEEN L C, Van ZANTE J, BROEREN A, et al. Flow quality surveys in the settling chamber of the NASA Glenn icing research tunnel (2011 tests)[R]. AIAA 2012-2935, 2012. doi: 10.2514/6.2012-2935
    [12] CHINTAMANI S, BELTER D. Design features and flow qualities of the Boeing research aerodynamic icing tunnel[R]. AIAA 95-0540, 1994. doi: 10.2514/6.1994-540
    [13] IRANI E, AL-KHALIL K. Calibration and recent upgrades to the cox icing wind tunnel[R]. AIAA 2008-437, 2008. doi: 10.2514/6.2008-437
    [14] 郭向东,张平涛,赵照,等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报,2020,41(10):123879.

    GUO X D,ZHANG P T,ZHAO Z,et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10):123879.
    [15] 郭向东,柳庆林,赖庆仁,等. 大型结冰风洞气流场适航符合性验证[J]. 空气动力学学报,2021,39(2):184-195. doi: 10.7638/kqdlxxb-2019.0086

    GUO X D,LIU Q L,LAI Q R,et al. Airworthiness compliance verification of aerodynamic flowfield of a large-scale icing wind tunnel[J]. Acta Aerodynamica Sinica,2021,39(2):184-195. doi: 10.7638/kqdlxxb-2019.0086
    [16] AC-9C Aircraft Icing Technology Committee. SAE ARP 5905-2003, Calibration and acceptance of icing wind tunnels[S]. Warrendale, PA: SAE International, 2003.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  254
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-04
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日