留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元分析的变截面轴向力支撑片内式应变天平研制

史玉杰 彭超 米鹏 张璜炜

史玉杰,彭 超,米 鹏,等. 基于有限元分析的变截面轴向力支撑片内式应变天平研制[J]. 实验流体力学,2021,35(5):128-133 doi: 10.11729/syltlx20200109
引用本文: 史玉杰,彭 超,米 鹏,等. 基于有限元分析的变截面轴向力支撑片内式应变天平研制[J]. 实验流体力学,2021,35(5):128-133 doi: 10.11729/syltlx20200109
SHI Y J,PENG C,MI P,et al. Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):128-133. doi: 10.11729/syltlx20200109
Citation: SHI Y J,PENG C,MI P,et al. Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):128-133. doi: 10.11729/syltlx20200109

基于有限元分析的变截面轴向力支撑片内式应变天平研制

doi: 10.11729/syltlx20200109
详细信息
    作者简介:

    史玉杰:(1979-),男,河南许昌人,高级工程师。研究方向:风洞应变天平研制与应用。通信地址:四川省绵阳市二环路南段6号中国空气动力研究与发展中心(621000)。E-mail:shyj7920@163.com

    通讯作者:

    E-mail:mipeng2016@126.com

  • 中图分类号: V411.7

Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis

  • 摘要: 内式应变天平的轴向力元件结构在受到大载荷尤其是大力矩载荷后,其支撑片上的最大应力是限制天平最大承载能力的主要因素。研制了一台大力矩内式应变天平,并采用有限元分析方法对轴向力元件的支撑片和测量梁进行了优化和改进。将支撑片的外形由传统的等截面改进为变截面,减小支撑片中间部位的厚度,并增加两端的厚度,在保持天平轴向刚度一致的基础上,降低了支撑片上的最大应力;采用变截面结构的轴向力测量梁,减小了测量梁上的应变梯度。有限元分析结果表明:与传统的等截面支撑片相比,变截面支撑片上的应力分布比较均匀,其根部最大应力减小了20%以上;与等截面测量梁相比,变截面测量梁上的应变梯度降低了79%。天平校准结果与有限元分析结果一致,风洞测力试验也表明该天平具有良好的稳定性。
  • 图  1  CARDC的8N6-70A天平

    Figure  1.  The 8N6-70A balance of CARDC

    图  2  轴向力测量结构示意图

    Figure  2.  An axial section of strain gauge balance

    图  3  4N6-55A天平元件结构示意图

    Figure  3.  Structure diagram of 4N6-55A balance

    图  4  滚转力矩作用下轴向力结构变形示意图

    Figure  4.  Axial section deformation caused by rolling moment

    图  5  轴向力测量元件在滚转力矩作用下的应变

    Figure  5.  The strain of axial measuring beam caused by rolling moment

    图  6  一种不等高支撑片轴向力元件结构

    Figure  6.  An axial section with varying length flex beams

    图  7  轴向力支撑片优化方案

    Figure  7.  Optimization scheme of axial force flex beams

    图  8  两种支撑片的应力云图

    Figure  8.  Stress nephogram of two flex beams

    图  9  轴向力测量梁优化方案

    Figure  9.  Optimization scheme of axial force measuring beam

    图  10  轴向力测量元件在滚转力矩作用下的应变

    Figure  10.  The strain of axial force measuring beam by rolling moment

    图  11  天平的轴向力元件

    Figure  11.  Axial section of the balance

    图  12  天平强度校核结果

    Figure  12.  Result of balance strength checking

    表  1  天平设计载荷

    Table  1.   The design loads of balance

    Y / NMz /(N·m)X / NMx /(N·m)Z / NMy /(N·m)
    150001200150014004000600
    下载: 导出CSV

    表  2  天平有限元应变分析结果

    Table  2.   Finite element strain analysis results of balance

    天平分量YMzXMxZMy
    设计应变/10–6496654422917238591
    灵敏度/(mV·V–11.091.440.931.840.521.30
    对X干扰应变/10–611.00——1.00.50
    对X干扰占比/%2.20——0.10.20
    下载: 导出CSV

    表  3  天平静态校准结果

    Table  3.   Balance calibration results

    天平分量YMzXMxZMy
    灵敏度/(mV·V–11.031.360.911.790.501.25
    对X一次干扰/%3.00.8——0.11.20.9
    综合加载误差/% FS0.030.060.110.090.050.06
    下载: 导出CSV

    表  4  Ma = 0.75时重复性试验纵向气动导(系)数

    Table  4.   Longitudinal aerodynamic coefficient of repeatability test at Ma = 0.75

    车次号C${C_{m{C_L}}}$Cm0CD0Kmax
    202023610.078580.013310.006190.0119218.44076
    202024200.078190.011930.006160.0119318.51446
    下载: 导出CSV
  • [1] ZHAI J N, EWALD B, HUFNAGEL K. An investigation on the interference of internal six-component wind tunnel balances with FEM[C]//Proc of the ICIASF '95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities. 1995. doi: 10.1109/ICIASF.1995.519122
    [2] LINDELL M C. Finite Element Analysis of a NASA national transonic facility wind tunnel balance[C]//Proc of the International Symposium on Strain-Gage Balances. 1996.
    [3] 顾岩,虞伟建. 有限元分析法在风洞天平中的应用[J]. 流体力学实验与测量,1999,13(4):82-86.

    GU Y,YU W J. The application of finite element analysis in wind-tunnel balance[J]. Experiments and Measurements in Fluid Mech-anics,1999,13(4):82-86.
    [4] RHEW R D. NASA LaRC strain-gage balance design concepts[C]//Proc of the International Symposium on Strain-Gage Balances. 1996.
    [5] RHEW R D. Strain-gage balance axial section design optimization using design of experiments[R]. AIAA 2005-7600, 2005. doi: 10.2514/6.2005-7600
    [6] KARKEHABADI R, RHEW R D, HOPE D J. Study and analyses on the structural performance of a balance[R]. NASA/TM-2004-213263, 2004.
    [7] 胡国风. 应变天平矩形截面元件扭转应变计算准度分析[J]. 实验流体力学,2012,26(6):75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016

    HU G F. Accuracy analysis of the torsion strain calculation of a balance with rectangular cross-section[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016
    [8] BOUTEMEDJET A,SAMARDŽIĆ M,ĆURČIĆ D,et al. Wind tunnel measurement of small values of rolling moment using six-component strain gauge balance[J]. Measurement,2018,116:438-450. doi: 10.1016/j.measurement.2017.11.043
    [9] WEBB T L, LANDMAN D, BURNS D E, et al. A monolithic internal strain-gage balance design based on design for manufacturability[R]. AIAA 2019-3154, 2019. doi: 10.2514/6.2019-3154
    [10] BRET J F, LECONTE P, VIEIRA J P, et al. Rotating shaft balances for CRORs and propellers[R]. AIAA 2015-1790, 2015. doi: 10.2514/6.2015-1790
    [11] 任宗金,张亚娟,张军,等. 大长径比模型多维气动力测量天平设计[J]. 传感器与微系统,2019,38(2):56-58.

    REN Z J,ZHANG Y J,ZHANG J,et al. Design of multi-dimensional aerodynamic force measurement balance of large length-diameter ratio model[J]. Transducer and Microsystem Technologies,2019,38(2):56-58.
    [12] SWAPNA L,BHARATH K,SURESH B S. Shape optimization of a drag force element of a force transducer for wind tunnel measurements[J]. Journal of Mechanical Engineering and Auto-mation,2015,5(3B):33-38. doi: 10.5923/c.jmea.201502.07
    [13] 闫万方,蒋坤,张江. 基于减小轴向力测量干扰的高精度测力天平研制[J]. 实验流体力学,2018,32(6):61-67. doi: 10.11729/syltlx20180082

    YAN W F,JIANG K,ZHANG J. Development of a six-component wind tunnel balance with lower interference on axial force measurement[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):61-67. doi: 10.11729/syltlx20180082
    [14] 熊琳,宫建,王金印,等. 小直径杆式应变天平轴向力元件设计问题的探讨[J]. 实验流体力学,2013,27(5):75-78. doi: 10.3969/j.issn.1672-9897.2013.05.014

    XIONG L,GONG J,WANG J Y,et al. Discussion about axial force element design of bending-beam strain-gauge balance with small diameter[J]. Journal of Experiments in Fluid Mechanics,2013,27(5):75-78. doi: 10.3969/j.issn.1672-9897.2013.05.014
    [15] 史玉杰,陈竹,田正波. 横Ⅱ型梁在风洞应变天平阻力结构上的应用[J]. 实验流体力学,2012,26(4):83-86. doi: 10.3969/j.issn.1672-9897.2012.04.017

    SHI Y J,CHEN Z,TIAN Z B. The application of thwart Ⅱ beam to axial force structure of wind tunnel strain gauge balance[J]. Journal of Experiments in Fluid Mechanics,2012,26(4):83-86. doi: 10.3969/j.issn.1672-9897.2012.04.017
    [16] 田正波,王超. 杆式应变天平弧形断开槽结构特性研究[J]. 机械工程师,2019(3):87-89.

    TIAN Z B,WANG C. Research on structural characteristics of strain gauge balance with curved groove[J]. Mechanical Engineer,2019(3):87-89.
    [17] 贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001: 80

    HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001: 80.
    [18] 中国人民解放军总装备部. 风洞应变天平规范GJB2244A-2011[S]. 北京: 总装备部军标出版发行部, 2011
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  197
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2021-03-26
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日