留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究

兰子奇 史志伟 孙琪杰 耿玺

兰子奇, 史志伟, 孙琪杰, 等. AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J]. 实验流体力学, 2021, 35(2): 83-91. doi: 10.11729/syltlx20200095
引用本文: 兰子奇, 史志伟, 孙琪杰, 等. AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J]. 实验流体力学, 2021, 35(2): 83-91. doi: 10.11729/syltlx20200095
LAN Ziqi, SHI Zhiwei, SUN Qijie, et al. Experimental study on drag reduction of L-shaped bluff body by AC-DBD plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 83-91. doi: 10.11729/syltlx20200095
Citation: LAN Ziqi, SHI Zhiwei, SUN Qijie, et al. Experimental study on drag reduction of L-shaped bluff body by AC-DBD plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 83-91. doi: 10.11729/syltlx20200095

AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究

doi: 10.11729/syltlx20200095
基金项目: 

江苏省研究生科研与实践创新计划项目 SJCX19_0010

江苏高校优势学科建设工程资助项目;国家自然科学基金青年科学基金 11802126

详细信息
    作者简介:

    兰子奇(1995-), 男, 蒙古族, 内蒙古锡林郭勒人, 硕士研究生。研究方向: 主动流动控制。通信地址: 江苏省南京市秦淮区御道街29号南京航空航天大学航空学院(210016)。E-mail: 15150670058@163.com

    通讯作者:

    史志伟, E-mail: szwam@nuaa.edu.cn

  • 中图分类号: O359;TU973.213

Experimental study on drag reduction of L-shaped bluff body by AC-DBD plasma actuation

  • 摘要: 等离子体流动控制是一种应用广泛的主动流动控制技术。为进一步研究其机理、拓展其应用范围,针对L形截面钝体模型,采用3种AC-DBD(介质阻挡放电)等离子体激励器布置形式,比较了施加激励后的减阻效果,并对减阻机理进行了研究。实验在南京航空航天大学0.8 m低速直流风洞中进行(风向角0°、来流速度2~8 m/s),激励器布置形式为顺来流前缘激励、逆来流前缘激励和拐角激励。研究结果表明:不同来流速度下,等离子体激励器对L形截面钝体都有一定的减阻效果,且减阻效果随流速增大而降低;拐角激励减阻效果最佳,逆来流前缘激励次之,顺来流前缘激励最差;通过流场分析,说明了激励器布置形式变化产生了不同的扰动效果;不同的流动控制机理是影响减阻效果的关键因素。
  • 图  1  模型受风面编号、风向角定义及测压点

    Figure  1.  The number of each surface of the model and the definition of wind direction angle

    图  2  模型尺寸与测压点示意图

    Figure  2.  Model size and pressure tap

    图  3  介质阻挡放电等离子体激励器示意图

    Figure  3.  Dielectric Barrier Discharge plasma actuator

    图  4  不同布置形式的等离子体激励器

    Figure  4.  Plasma actuators with different configurations

    图  5  不同布置形式的激励器施加激励后的整体减阻率

    Figure  5.  Drag reduction rate after actuation of different layout actuators

    图  6  不同布置形式的激励器施加激励后各测压点的风压折减系数

    Figure  6.  The pressure reduction coefficient of each pressure tap after actuation

    图  7  施加激励前后不同流速下侧风面F平均风压系数云图(x=0 mm)

    Figure  7.  The mean pressure coefficient contour maps of surface F under different wind speeds conditions before and after applying actuation(x=0 mm)

    图  8  施加激励前后不同流速下背风面E平均风压系数云图(y=96 mm)

    Figure  8.  The mean pressure coefficient contour maps of surface E under different wind speed conditions before and after applying actuation(y=96 mm)

    图  9  不同流速下、不同布置形式激励器施加激励前后的侧风面F平均风压系数云图(x=0 mm)

    Figure  9.  The mean pressure coefficient contour maps of surface F under different wind speeds conditions before and after applying actuation(x=0 mm)

    图  10  不同流速下、不同布置形式激励器施加激励前后的背风面E平均风压系数云图(y=96 mm)

    Figure  10.  The mean pressure coefficient contour maps of surfaceE under different wind speed conditions before and after applying actuation(y=96 mm)

    图  11  不同布置形式激励器施加激励前后的速度标量图

    Figure  11.  Speed scalar quantity of the plasma actuator with different configurations before and after applying actuation

    图  12  不同布置形式激励器施加激励前后的涡量图

    Figure  12.  Vorticity chart of the plasma actuator with different configurations before and after applying actuation

    表  1  实验工况表

    Table  1.   Experimental conditions

    激励器布置形式 风向角/(°) 来流速度/(m·s-1)
    顺来流前缘激励 0 2, 3, 4, 5, 6
    逆来流前缘激励 0 2, 3, 4, 5, 6, 7, 8
    拐角激励 0 2, 3, 4, 5, 6, 7, 8
    下载: 导出CSV
  • [1] 吴瑾, 夏逸鸣, 张丽芳. 土木工程结构抗风设计[M]. 北京: 科学出版社, 2007.
    [2] SIMIU E, YEO D H. Wind effects on structures: modern structural design for wind[M/OL]. 4th ed. New Jersey: Wiley-Blackwell, 2019: 55-71. [2020-08-19]. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119375890.doi: 10.1002/9781119375890
    [3] KENNEDY J, NERI E, BENNETT G J. The reduction of main landing gear noise[C]//Proc of the 22nd AIAA/CEAS Aeroacoustics Conference. 2016 doi: 10.2514/6.2016-2900
    [4] DIPANKAR A, SENGUPTA T K, TALLA S B. Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2007, 573: 171-190. doi: 10.1017/s002211200600382x
    [5] BAO Y, TAO J. The passive control of wake flow behind a circular cylinder by parallel dualplates[J]. Journal of Fluids and Structures, 2013, 37: 201-219. doi: 10.1016/j.jfluidstructs.2012.11.002
    [6] MARUTA E, KANDA M, SATO J. Effects on surface roughness for wind pressure on glass and cladding ofbuildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 651-663. doi: 10.1016/S0167-6105(98)00059-2
    [7] TANAKA H, TAMURA Y, OHTAKE K, et al. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 107-108: 179-191. doi: 10.1016/j.jweia.2012.04.014
    [8] 张耀春, 秦云, 王春刚. 洞口设置对高层建筑静力风荷载的影响研究[J]. 建筑结构学报, 2004, 25(4): 112-117, 123. doi: 10.3321/j.issn:1000-6869.2004.04.018

    ZHANG Y C, QIN Y, WANG C G. Research on the influence of openings to static wind load of highrise buildings[J]. Journal of Building Structures, 2004, 25(4): 112-117, 123. doi: 10.3321/j.issn:1000-6869.2004.04.018
    [9] 顾明, 王凤元, 全涌, 等. 超高层建筑风荷载的试验研究[J]. 建筑结构学报, 2000, 21(4): 48-54. doi: 10.14006/j.jzjgxb.2000.04.007

    GU M, WANG F Y, QUAN Y, et al. Experimental study on dynamic wind loads on super-tall buildings[J]. Journal of Building Structures, 2000, 21(4): 48-54. doi: 10.14006/j.jzjgxb.2000.04.007
    [10] 张正维, 全涌, 顾明, 等. 凹角对方形截面高层建筑基底气动力系数的影响研究[J]. 土木工程学报, 2013, 46(7): 58-65. doi: 10.15951/j.tmgcxb.2013.07.017

    ZHANG Z W, QUAN Y, GU M, et al. Effects of corner recession modification on aerodynamic coefficients of square high-rise buildings[J]. China Civil Engineering Journal, 2013, 46(7): 58-65. doi: 10.15951/j.tmgcxb.2013.07.017
    [11] BANDI E K, KIM Y, YOSHIDA A, et al. Aerodynamic characteristics of triangular-section tall buildings with different helical angles[C]//Proc of the ICWE13-International Conference on Wind Engineering'13. 2011.
    [12] 战培国, 程娅红, 赵昕. 主动流动控制技术研究[J]. 航空科学技术, 2010, 21(5): 2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001

    ZHAN P G, CHENG Y H, ZHAO X. A review of active flow controltechnology[J]. Aeronautical Science and Technology, 2010, 21(5): 2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001
    [13] FENG L H, WANG J J, PAN C. Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder[J]. Journal of Fluids and Structures, 2010, 26(6): 900-917. doi: 10.1016/j.jfluidstructs.2010.05.003
    [14] 王佳, 邓飞, 张衡. 壁面振动对流场特性影响的数值模拟预报[J]. 声学技术, 2013, 32(4, Pt. 2): 76-79. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-SXJS201308001022.htm

    WANG J, DENG F, ZHANG H. The numerical simulation forecast of the characteristic on wall oscillation to the flow field[J]Technical Acoustics, 2013, 32(4, Pt. 2): 76-79. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-SXJS201308001022.htm
    [15] 董宇飞, 魏中磊. 流线型轴对称钝体尾迹特性及其声激励控制[J]. 力学学报, 1999, 31(6): 682-693. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199906006.htm

    DONG Y F, WEI Z L. Experimental investigation of the wake of axisymmetric bluff body and its control by means of acoustic forcing[J]. Acta Mechanica Sinica, 1999, 31(6): 682-693. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199906006.htm
    [16] 张立启. 三维圆柱绕流与涡激振动的行波壁控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHANG L Q. Study on traveling wave wall control method of flow around the three-dimensional cylinder and vortex induced vibration[D]. Harbin: Harbin Institute of Technology, 2019. doi: 10.27061/d.cnki.ghgdu.2019.002261
    [17] 郑朝荣, 张耀春. 高层建筑风荷载减阻的吸气方法数值研究[J]. 应用基础与工程科学学报, 2010, 18(1): 80-90. doi: 10.3969/j.issn.1005-0930.2010.01.010

    ZHENG C R, ZHANG Y C. Numerical investigation of the wind-load reduction for a high-rise building by suction[J]. Journal of Basic Science and Engineering, 2010, 18(1): 80-90. doi: 10.3969/j.issn.1005-0930.2010.01.010
    [18] 张洪福. 超高层建筑横风向风致效应定常吸气控制[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHANG H F. Steady suction for controlling Across-wind-induced effects of super High-risebuildings[D]. Harbin: Harbin Institute of Technology, 2013.
    [19] SHTENDEL T, SEIFERT A. Three-dimensional aspects of cylinder drag reduction by suction and oscillatoryblowing[J]. International Journal of Heat and Fluid Flow, 2014, 45: 109-127. doi: 10.1016/j.ijheatfluidflow.2013.10.009
    [20] 史志伟, 杜海, 李铮, 等. 等离子体流动控制技术原理及典型应用[J]. 高压电器, 2017, 53(4): 72-78. doi: 10.13296/j.1001-1609.hva.2017.04.013

    SHI Z W, DU H, LI Z, et al. Mechanism and applications of plasma flow control technology[J]. High Voltage Apparatus, 2017, 53(4): 72-78. doi: 10.13296/j.1001-1609.hva.2017.04.013
    [21] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78. doi: 10.1016/j.paerosci.2013.05.003
    [22] 龙玥霄, 李华星, 孟宣市. AC和NS等离子体激励对细长前体分离涡流场的控制[J]. 航空工程进展, 2014, 5(3): 358-363. doi: 10.16615/j.cnki.1674-8190.2014.03.014

    LONG Y X, LI H X, MENG X S. Flow control over a slender forebody using AC and NS-DBD plasmaactuators[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 358-363. doi: 10.16615/j.cnki.1674-8190.2014.03.014
    [23] 孟宣市, 杨泽人, 陈琦, 等. 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016, 37(7): 2112-2122. doi: 10.7527/S1000-6893.2015.0244

    MENG X S, YANG Z R, CHEN Q, et al. Laminar separation control at low Reynolds numbers using plasmaactuation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2112-2122. doi: 10.7527/S1000-6893.2015.0244
    [24] 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展, 2012, 42(6): 722-734. doi: 10.6052/1000-0992-11-161

    NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flowcontrol[J]. Advances in Mechanics, 2012, 42(6): 722-734. doi: 10.6052/1000-0992-11-161
    [25] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. doi: 10.7527/S1000-6893.2014.0246

    WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405. doi: 10.7527/S1000-6893.2014.0246
    [26] 马力群, 冯立好. 放置于驻点的合成射流控制圆柱涡脱落模式的实验研究[J]. 中国科学(技术科学), 2013, 43(2): 208-219. doi: 10.1007/s11431-012-5074-4

    MA L Q, FENG L H. Experimental investigation on control of vortex shedding mode of a circular cylinder using synthetic jets placed at stagnationpoints[J]. Scientia Sinica Technologica, 2013, 43(2): 208-219. doi: 10.1007/s11431-012-5074-4
    [27] 孙卫威. 等离子体流动控制技术在低矮建筑物应用的研究[D]. 长沙: 湖南大学, 2017.

    SUN W W. The application research of plasma flow control technology on low rise buildings[D]. Changsha: Hunan University, 2017.
    [28] 郑朝荣, 张耀春. 吸气方法在高层建筑风荷载减阻中的应用[J]. 工程力学, 2009, 26(z1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S1016.htm

    ZHENG C R, ZHANG Y C. Application of the suction method to reduce the wind load on high-rise building[J]. Engineering Mechanics, 2009, 26(z1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2009S1016.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  98
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2020-11-09
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日