留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯燃料超燃冲压发动机燃烧过程研究

钟富宇 乐嘉陵 田野 岳茂雄

钟富宇, 乐嘉陵, 田野, 等. 乙烯燃料超燃冲压发动机燃烧过程研究[J]. 实验流体力学, 2021, 35(1): 34-43. doi: 10.11729/syltlx20200093
引用本文: 钟富宇, 乐嘉陵, 田野, 等. 乙烯燃料超燃冲压发动机燃烧过程研究[J]. 实验流体力学, 2021, 35(1): 34-43. doi: 10.11729/syltlx20200093
ZHONG Fuyu, LE Jialing, TIAN Ye, et al. Investigation of the combustion process in an ethylene-fueled scramjet combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43. doi: 10.11729/syltlx20200093
Citation: ZHONG Fuyu, LE Jialing, TIAN Ye, et al. Investigation of the combustion process in an ethylene-fueled scramjet combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43. doi: 10.11729/syltlx20200093

乙烯燃料超燃冲压发动机燃烧过程研究

doi: 10.11729/syltlx20200093
基金项目: 

国家自然科学基金青年基金 51706237

博士后基金面上项目 2019M653953

详细信息
    作者简介:

    钟富宇(1992-), 男, 四川内江人, 工程师。研究方向: 超燃冲压发动机试验及测量技术。通信地址: 四川省绵阳市二环路南段6号1904信箱(621000)。E-mail: zfy_cardc@163.com

    通讯作者:

    岳茂雄, E-mail: ymxyxx@163.com

  • 中图分类号: V231

Investigation of the combustion process in an ethylene-fueled scramjet combustor

  • 摘要: 在来流马赫数2.0的直连式燃烧设备上,研究了氢气引燃条件下带凹腔的超燃冲压发动机燃烧室内,从氢点火到氢与乙烯混合燃烧,再到乙烯单独燃烧的全过程的燃烧流动特性,通过纹影、火焰自发光、CH自发光以及OH-PLIF等手段瞬时同步研究了流场结构和火焰发展。先锋氢与乙烯的当量比分别约为0.33和0.10。整个燃烧过程分6个阶段,第一阶段为先锋氢注入之前的无反应流动,试验测定振荡频率约为400 Hz。第二阶段用于揭示先锋氢被点燃之前的流动特性,由于先锋氢的注入而产生的激波在下壁面反射并与凹腔内的激波相互作用,导致监测点压力增大。第三阶段描述了先锋氢的燃烧过程,从点火、火焰稳定直到壁面压力稳定,历时约26.0 ms。在0.1 ms内先锋氢点火对燃烧流场及流动结构产生重大影响,试验测量先锋氢燃烧产生的激波串的运动速度约为20 m/s,先锋氢稳焰模式为凹腔回流区稳定燃烧。第四阶段为氢气和乙烯混合燃烧,此阶段燃烧变得更加剧烈,激波串被推入隔离段内,以至于超出了观测范围,该阶段乙烯稳焰模式为剪切层稳定燃烧。第五阶段为乙烯的燃烧流动,当先锋氢停止喷注后,乙烯火焰在凹腔内的位置由上游向下游移动。最后一个阶段是乙烯单独燃烧直到火焰熄灭。初步分析表明,乙烯燃烧的CH自发光图片能定性研究其燃烧效率。
  • 图  1  中国空气动力研究与发展中心直连式脉冲燃烧风洞

    Figure  1.  Direct-connected pulse combustion wind tunnel of CARDC

    图  2  超燃冲压发动机内流道型面及燃烧室示意图

    Figure  2.  Geometry of internal flow passage and the schematic diagram of a scramjet combustor

    图  3  燃料(氢气、乙烯)、加热器和监测点压力随时间的变化

    Figure  3.  Pressure of fuel (hydrogen, ethylene), heater and monitor point variation over time

    图  4  各阶段上壁面中心线时均沿程压力分布

    Figure  4.  The average pressure distribution on the centre line of the stages

    图  5  第一阶段凹腔内的纹影图和计算流线图

    Figure  5.  The schlieren image and the streamline of cavity in the first stage

    图  6  第二阶段凹腔内的纹影照片

    Figure  6.  Schlieren images of cavity in the second stage

    图  7  第三阶段氢气点火过程

    Figure  7.  Hydrogen ignition process of the third stage

    图  8  第三阶段的纹影图像

    Figure  8.  Schlieren images of the third stage

    图  9  第三阶段火焰自发光图像

    Figure  9.  Flame luminosity images of the third stage

    图  10  第三阶段OH-PLIF图像

    Figure  10.  OH-PLIF images of the third stage

    图  11  第四阶段的纹影图像

    Figure  11.  Schlieren images of the fourth stage

    图  12  第四阶段的火焰自发光图像

    Figure  12.  Flame luminosity images of the fourth stage

    图  13  第四阶段的CH自发光图像

    Figure  13.  CH luminosity images of the fourth stage

    图  14  第五阶段的纹影图像

    Figure  14.  Schlieren images of the fifth stage

    图  15  第五阶段的火焰自发光图像

    Figure  15.  Flame luminosity images of the fifth stage

    图  16  第五阶段的CH自发光图像

    Figure  16.  CH luminosity images of the fifth stage

    图  17  第五阶段的OH-PLIF图像

    Figure  17.  OH-PLIF images of the fifth stage

    表  1  试验操作时序

    Table  1.   Experimental operation sequence

    操作
    时序
    流场
    建立
    先锋氢
    喷注
    火花塞
    工作
    乙烯
    喷注
    先锋氢
    停止
    乙烯
    停止
    t/ms -32.0 0 27.0 100.0 207.0 308.0
    下载: 导出CSV

    表  2  试验过程的描述

    Table  2.   Description of the test process

    阶段 t/ms 描述
    Part 1 -32.0~0 氢气未喷注前的无反应流
    Part 2 0~27.0 氢气喷注但未点火的无反应流
    Part 3 27.0~100.0 氢气单独燃烧
    Part 4 100.0~207.0 氢气和乙烯共同燃烧
    Part 5 207.0~308.0 乙烯单独燃烧
    Part 6 308.0~398.0 燃烧熄灭过程
    下载: 导出CSV
  • [1] URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50(1): 593-627. doi: 10.1146/annurev-fluid-122316-045217
    [2] 田野, 乐嘉陵, 杨顺华, 等. 氢燃料超燃燃烧室流场结构和火焰传播规律试验研究[J]. 实验流体力学, 2019, 33(1): 72-78. doi: 10.11729/syltlx20180027

    TIAN Y, LE J L, YANG S H, et al. Experimental study on flow structure and flame development in a hydrogen-fueled supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 72-78. doi: 10.11729/syltlx20180027
    [3] 吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70-77. doi: 10.11729/syltlx20190168

    WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70-77. doi: 10.11729/syltlx20190168
    [4] RUAN J L, DOMINGO P, RIBERT G. Analysis of combustion modes in a cavity based scramjet[J]. Combustion and Flame, 2020, 215: 238-251. doi: 10.1016/j.combustflame.2020.01.034
    [5] GORDON R L, STÅRNER S H, MASRI A R, et al. Further characterisation of lifted hydrogen and methane flames issuing into a vitiated coflow[C]//Proc of the 5th Asia-Pacific Conference on Combustion. 2005.
    [6] GORDON R L, MASRI A R, MASTORAKOS E. Simu-ltaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow[J]. Combustion and Flame, 2008, 155(1-2): 181-195. doi: 10.1016/j.combustflame.2008.07.001
    [7] MASTORAKOS E. Ignition of turbulent non-premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35(1): 57-97. doi: 10.1016/j.pecs.2008.07.002
    [8] 张弯洲, 乐嘉陵, 杨顺华, 等. Ma4下超燃发动机乙烯点火及火焰传播过程试验研究[J]. 实验流体力学, 2016, 30(3): 40-46, 84. doi: 10.11729/syltlx20150161

    ZHANG W Z, LE J L, YANG S H, et al. Experimental research on ethylene ignition and flame propagation processes for scramjet at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 40-46, 84. doi: 10.11729/syltlx20150161
    [9] BRIESCHENK S, O'BYRNE S, KLEINE H. Laser-induced plasma ignition studies in a model scramjet engine[J]. Combustion and Flame, 2013, 160(1): 145-148. doi: 10.1016/j.combustflame.2012.08.011
    [10] BRIESCHENK S, O'BYRNE S, KLEINE H. Ignition charac-teristics of laser-ionized fuel injected into a hypersonic crossflow[J]. Combustion and Flame, 2014, 161(4): 1015-1025. doi: 10.1016/j.combustflame.2013.09.024
    [11] KUMARAN K, BABU V. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen[J]. Combustion and Flame, 2009, 156(4): 826-841. doi: 10.1016/j.combustflame.2009.01.008
    [12] NAKAYA S, TSUE M, KONO M, et al. Effects of thermally cracked component of n-dodecane on supersonic combustion behaviors in a scramjet model combustor[J]. Combustion and Flame, 2015, 162(10): 3847-3853. doi: 10.1016/j.combustflame.2015.07.021
    [13] 何粲, 邢建文, 肖保国, 等. 矩形截面超燃发动机不同燃烧模态下的流场特征[J]. 实验流体力学, 2018, 32(4): 12-19. doi: 10.11729/syltlx20180022

    HE C, XING J W, XIAO B G, et al. Investigation on flow field characteristics of a rectangular scramjet in different combustion modes[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 12-19. doi: 10.11729/syltlx20180022
    [14] QIN Q Y, AGARWAL R, ZHANG X B. A novel method for flame stabilization in a strut-based scramjet combustor[J]. Combustion and Flame, 2019, 210: 292-301. doi: 10.1016/j.combustflame.2019.08.038
    [15] FÖRSTER F J, DRÖSKE N C, BVHLER M N, et al. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization[J]. Combustion and Flame, 2016, 168: 204-215. doi: 10.1016/j.combustflame.2016.03.010
    [16] AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame, 2020, 212: 177-188. doi: 10.1016/j.combustflame.2019.10.030
    [17] TIAN Y, YANG S H, LE J L, et al. Investigation of combustion process of a kerosene fueled combustor with air throttling[J]. Combustion and Flame, 2017, 179: 74-85. doi: 10.1016/j.combustflame.2017.01.021
    [18] TIAN Y, XIAO B G, ZHANG S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Technology, 2015, 46: 451-458. doi: 10.1016/j.ast.2015.09.002
    [19] TIAN Y, YANG S H, LE J L. Numerical study on effect of air throttling on combustion mode formation and transition in a dual-mode scramjet combustor[J]. Aerospace Science and Technology, 2016, 52: 173-180. doi: 10.1016/j.ast.2016.02.027
    [20] 钟富宇, 乐嘉陵, 韩亦宇, 等. 当量比对氢燃料超燃燃烧室流场结构和燃烧模态影响研究[J]. 推进技术, 2019, 40(2): 324-330. doi: 10.13675/j.cnki.tjjs.170776

    ZHONG F Y, LE J L, HAN Y Y, et al. Investigation for effects of equivalence ratio on flow structure and combustion mode in a hydrogen fueled scramjet combustor[J]. Journal of Propulsion Technology, 2019, 40(2): 324-330. doi: 10.13675/j.cnki.tjjs.170776
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  215
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2020-09-26
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日