留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电陶瓷布局对除冰效果的影响研究

包明鑫 苗波 朱春玲

包明鑫,苗 波,朱春玲. 压电陶瓷布局对除冰效果的影响研究[J]. 实验流体力学,2021,35(4):73-82 doi: 10.11729/syltlx20200091
引用本文: 包明鑫,苗 波,朱春玲. 压电陶瓷布局对除冰效果的影响研究[J]. 实验流体力学,2021,35(4):73-82 doi: 10.11729/syltlx20200091
BAO M X,MIAO B,ZHU C L. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):73-82. doi: 10.11729/syltlx20200091
Citation: BAO M X,MIAO B,ZHU C L. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):73-82. doi: 10.11729/syltlx20200091

压电陶瓷布局对除冰效果的影响研究

doi: 10.11729/syltlx20200091
基金项目: 国家自然科学基金(51806105,11832012)
详细信息
    作者简介:

    包明鑫:(1996-),男,青海互助人,硕士研究生。研究方向:飞机防除冰技术。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空学院(210016)。E-mail:bmx1996@nuaa.edu.cn

    通讯作者:

    E-mail:clzhu@nuaa.edu.cn

  • 中图分类号: V244.1+5

Research on the influence of the piezoelectric ceramics layout on de-icing effect

  • 摘要: 用仿真与实验的方式研究了压电陶瓷除冰技术在复合材料上的应用。通过有限元仿真研究了在能耗相等的前提下压电陶瓷布局(数目、间距)对除冰效果的影响,并进行了冷环境下除冰实验。仿真结果表明:按合理的布局方式,将尺寸较大的单块压电陶瓷分成尺寸较小的多块时,会有比大尺寸单块压电陶瓷更好的除冰效果;随着压电陶瓷间距的减小,除冰效果进一步增强。实验结果表明:增大压电陶瓷输入功率可以较大程度缩短除冰时间;将尺寸较大的单个压电陶瓷分成尺寸较小的4块后,相同能耗下除冰效果增强;减小压电陶瓷之间的的间距后,除冰时间进一步缩短。
  • 图  1  复合材料平板铺层示意图

    Figure  1.  The ply orientation distribution of the composite plate

    图  2  平板振型图

    Figure  2.  The mode shapes of the plate

    图  3  不同数目的压电陶瓷布局

    Figure  3.  Layouts of different numbers of piezoelectric ceramics

    图  4  4个节点位置示意图

    Figure  4.  The location of the four nodes

    图  5  节点最大位移随单个压电陶瓷有效面积的变化曲线

    Figure  5.  The curve of the maximum displacements of nodes varying with the effective area of single piezoelectric ceramic

    图  6  4个节点的频响曲线

    Figure  6.  Frequency response curve of four nodes

    图  7  3个节点位置示意图

    Figure  7.  The location of the three nodes

    图  8  最大位移随压电陶瓷间距变化曲线

    Figure  8.  The curve between the maximum displacement and the spacing

    图  9  5个波峰/波谷上的压电陶瓷布局及剪切应力(0.955 kHz)

    Figure  9.  Layout of piezoelectric ceramics on five peaks /valleys and shear stress (0.955 kHz)

    图  10  高频(139.800 kHz)下的剪切应力图

    Figure  10.  The shear stress at high frequency (139.800 kHz)

    图  11  长宽比4.3的平板振型图

    Figure  11.  Mode shape of the plate with the aspect ratio of 4.3

    图  12  长宽比4.3的平板上的压电陶瓷布局

    Figure  12.  The layout of actuators on the plate with aspect ratio of 4.3

    图  13  能耗分析图

    Figure  13.  Energy analysis diagram

    图  14  平板Tsai-Wu失效准则破坏因子云图

    Figure  14.  Destory factors of Tsai-Wu failure criteria of two plates

    图  15  实验固支方式

    Figure  15.  The fixation method of the experiment

    图  16  冰层脱落图

    Figure  16.  The figure of the ice de-bonding

    图  17  压电陶瓷布局

    Figure  17.  The layout of piezoelectric ceramics

    表  1  复合材料的物理参数

    Table  1.   Physical parameters of composite materials

    Density/(kg·m–3Ex /PaEy /PaEz /PaνxyνxzνyzGxy /PaGxz /PaGyz /Pa
    20005.00×10108.00×1098.00×1090.300.300.405.00×1095.00×1093.85×109
    下载: 导出CSV

    表  2  不同数目的压电陶瓷的尺寸表(厚度为2 mm)

    Table  2.   Dimensions of different numbers of piezoelectric ceramics (thickness is 2 mm)

    Number of
    piezoelectric ceramics
    Length/
    mm
    Width/
    mm
    Effective area of
    single piezoelectric ceramic/mm2
    Total effective
    area/mm2
    130.030.0900.0900.0
    225.018.0450.0900.0
    320.015.0300.0900.0
    415.015.0225.0900.0
    515.012.0180.0900.0
    615.010.0150.0900.0
    815.07.5112.5900.0
    910.010.0100.0900.0
    1010.09.090.0900.0
    下载: 导出CSV

    表  3  不同激振频率下的剪切应力

    Table  3.   Shear stresses in different vibration frequencies

    CaseFrequency/kHzVoltage/VTotal shear stress/MPaPower /(kW·m–2
    10.9322000.1600.010
    2140.0002000.8902.000
    3139.9662001.7201.990
    下载: 导出CSV

    表  4  平板强度参数(MPa)[28]

    Table  4.   The strength parameters of the plate (MPa)[28]

    XTXCYTYCZTZCSxySyzSxz
    110067011006703512080.08046.1
    下载: 导出CSV

    表  5  实验结果数据

    Table  5.   Experimental datas

    NumberDimension of the
    piezoelectric ceramics/mm3
    Space between the
    piezoelectric ceramics/mm
    Frequency
    /kHz
    Voltage
    /V
    Power
    /(kW·m–2
    De-bondingTime/s
    140×40×100.9323000.047No
    240×40×1020.0003001.017Yes120
    340×40×10134.3703006.831Yes65
    420×20×141.0803000.055Yes87
    520×20×1418.0003000.915Yes40
    620×20×14110.0001005.592Yes38
    720×20×1121.0803000.055Yes100
    820×20×11218.0003000.915Yes48
    920×20×112113.5001005.770Yes53
    下载: 导出CSV
  • [1] CAO Y H,WU Z L,SU Y,et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences,2015,74:62-80. doi: 10.1016/j.paerosci.2014.12.001
    [2] POLITOVICH M K. Aircraft icing caused by large supercooled droplets[J]. Journal of Applied Meteorology,1989,28(9):856-868. doi:10.1175/1520-0450(1989)028<0856:aicbls>2.0.co;2
    [3] ZHU Y, PALACIOS J, ROSE J, et al. De-icing of multi-layer composite plates using ultrasonic guided waves[C]//Proc of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 16th AIAA/ASME/AHS Adaptive Structures Conference. 2008. doi: 10.2514/6.2008-1862
    [4] LI Q Y,BAI T,ZHU C L. Numerical simulation and experiment of traveling wave piezoelectric de-icing technique[J]. Applied Mecha-nics and Materials,2014,680:154-159. doi: 10.4028/www.scientific.net/amm.680.154
    [5] BUDINGER M,POMMIER-BUDINGER V,BENNANI L,et al. Electromechanical resonant ice protection systems: analysis of fracture propagation mechanisms[J]. AIAA Journal,2018,56(11):4412-4422. doi: 10.2514/1.J056663
    [6] VILLENEUVE E,HARVEY D,ZIMCIK D,et al. Piezoelectric deicing system for rotorcraft[J]. Journal of the American Helicopter Society,2015,60(4):1-12. doi: 10.4050/jahs.60.042001
    [7] THOMAS S K,CASSONI R P,MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft,1996,33(5):841-854. doi: 10.2514/3.47027
    [8] BUDINGER M,POMMIER-BUDINGER V,NAPIAS G,et al. Ultrasonic ice protection systems: analytical and numerical models for architecture tradeoff[J]. Journal of Aircraft,2016,53(3):680-690. doi: 10.2514/1.C033625
    [9] JAFFE B, COOK W R, JAFFE H. Piezoelectric ceramics[M]. New York: Academic Press, 1971.
    [10] JAFFE B,ROTH R S,MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. Journal of Applied Physics,1954,25(6):809-810. doi: 10.1063/1.1721741
    [11] DANILIUK V,XU Y M,LIU R B,et al. Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers[J]. Renewable Energy,2020,145:2005-2018. doi: 10.1016/j.renene.2019.07.102
    [12] POMMIER-BUDINGER V,BUDINGER M,ROUSET P,et al. Electromechanical resonant ice protection systems: initiation of fractures with piezoelectric actuators[J]. AIAA Journal,2018,56(11):4400-4411. doi: 10.2514/1.J056662
    [13] HABIBI H,EDWARDS G,SANNASSY C,et al. Modelling and empirical development of an anti/de-icing approach for wind turbine blades through superposition of different types of vibration[J]. Cold Regions Science and Technology,2016,128:1-12. doi: 10.1016/j.coldregions.2016.04.012
    [14] 朱永久,李清英,苗波,等. 飞机压电除冰技术的数值模拟与实验[J]. 机电信息,2015(9):102-103. doi: 10.19514/j.cnki.cn32-1628/tm.2015.09.065
    [15] 王绍龙. 基于超声波法的风力机叶片翼型防除冰研究[D]. 哈尔滨: 东北农业大学, 2014.

    WANG S L. The research of wind turbine blade airfoil controlling ice based on ultrasonic method[D]. Harbin: Northeast Agricultural Univer-sity, 2014.
    [16] 韩龙伸. 超声波除冰方法与试验研究[D]. 杭州: 杭州电子科技大学, 2013.

    HAN L S. Research on ultrasonic deicing method and its experi-ment[D]. Hangzhou: Hangzhou Dianzi University, 2013.
    [17] ZENG J,SONG B L. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades[J]. Renewable Energy,2017,113:706-712. doi: 10.1016/j.renene.2017.06.045
    [18] 谭海辉,李录平,靳攀科,等. 风力机叶片超声波除冰理论与方法[J]. 中国电机工程学报,2010,30(35):112-117.

    TAN H H,LI L P,JIN P K,et al. Ultrasonic de-icing theory and method for wind turbine blades[J]. Proceedings of the CSEE,2010,30(35):112-117.
    [19] 谭海辉. 风力机桨叶超声波防除冰理论与技术研究[D]. 长沙: 长沙理工大学, 2011.

    TAN H H. Research on ultrasonic wave anti-icing and de-icing theory and technology for wind turbine blades[D]. Changsha: Changsha University of Science & Technology, 2011.
    [20] WANG Z J,XU Y M,SU F,et al. A light lithium niobate transducer for the ultrasonic de-icing of wind turbine blades[J]. Renewable Energy,2016,99:1299-1305. doi: 10.1016/j.renene.2016.05.020
    [21] 苗波,朱春玲,朱程香,等. 翼型曲面的压电振动除冰方法研究[J]. 实验流体力学,2016,30(2):46-53. doi: 10.11729/syltlx20160010

    MIAO B,ZHU C L,ZHU C X,et al. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):46-53. doi: 10.11729/syltlx20160010
    [22] BAI T,ZHU C,MIAO B,et al. Vibration de-icing method with piezoelectric actuators[J]. Journal of Vibroengineering,2015,17(1):61-73.
    [23] DUTTON S, KELLY D, BAKER A. Composite materials for aircraft structures, second edition[M]. Reston: American Institute of Aeronau-tics and Astronautics, 2004. doi: 10.2514/4.861680
    [24] 孟光, 瞿叶高. 复合材料结构振动与声学[M]. 北京: 国防工业出版社, 2017.

    MENG G, QU Y G. Vibration and acoustics of composite structures[M]. Beijing: National Defense Industry Press, 2017.
    [25] 苗波,朱春玲,朱程香. 平板压电除冰系统中压电元件排布规律研究[J]. 空气动力学学报,2016,34(6):732-737. doi: 10.7638/kqdlxxb-2015.0216

    MIAO B,ZHU C L,ZHU C X. Research on placement of piezoelectric actuators in plate piezoelectric de-icing system[J]. Acta Aerodynamica Sinica,2016,34(6):732-737. doi: 10.7638/kqdlxxb-2015.0216
    [26] 苗波. 翼型压电振动除冰理论和实验研究[D]. 南京: 南京航空航天大学, 2016.

    MIAO B. Research on theories and experiments of airfoil piezo-actuated vibratory de-icing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [27] HABIBI H,CHENG L,ZHENG H T,et al. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy,2015,83:859-870. doi: 10.1016/j.renene.2015.05.025
    [28] 钱若力,穆晓光,王轩,等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程,2020(7):13-19, 52. doi: 10.3969/j.issn.1003-0999.2020.07.002

    QIAN R L,MU X G,WANG X,et al. Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites Science and Engineering,2020(7):13-19, 52. doi: 10.3969/j.issn.1003-0999.2020.07.002
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  287
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2020-11-02
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日