留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

润湿异性表面液滴定向运动研究进展

曹刚 黄苏和 李明升 胡海豹

曹刚, 黄苏和, 李明升, 等. 润湿异性表面液滴定向运动研究进展[J]. 实验流体力学, 2021, 35(1): 67-85. doi: 10.11729/syltlx20200086
引用本文: 曹刚, 黄苏和, 李明升, 等. 润湿异性表面液滴定向运动研究进展[J]. 实验流体力学, 2021, 35(1): 67-85. doi: 10.11729/syltlx20200086
CAO Gang, HUANG Suhe, LI Mingsheng, et al. Advances in research on directional movement of droplets on wetted anisotropic surfaces[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 67-85. doi: 10.11729/syltlx20200086
Citation: CAO Gang, HUANG Suhe, LI Mingsheng, et al. Advances in research on directional movement of droplets on wetted anisotropic surfaces[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 67-85. doi: 10.11729/syltlx20200086

润湿异性表面液滴定向运动研究进展

doi: 10.11729/syltlx20200086
基金项目: 

国家自然科学基金 51879218

国家自然科学基金 52071272

国家自然科学基金 51679203

基础前沿项目 JCKY2018*****18

陕西省自然科学基础研究计划资助项目 2020JC-18

中央高校基本科研业务费专项资金 3102020HHZY030014

西北工业大学研究生创意创新种子基金 CX2020062

详细信息
    作者简介:

    曹刚 (1994-),男,甘肃平凉人,硕士研究生。研究方向:液滴定向运动及液滴撞击行为。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学航海学院高速水洞实验室(710072) E-mail: 1242258780@qq.com

    通讯作者:

    胡海豹, E-mail: huhaibao@nwpu.edu.cn

  • 中图分类号: O647.11;O647.5

Advances in research on directional movement of droplets on wetted anisotropic surfaces

  • 摘要: 液滴在润湿异性表面的定向运动具有重要应用价值,如油水分离、水收集等,已成为表界面领域的研究热点。开展润湿异性表面液滴定向运动研究,对于理解固-液相互作用、开发高性能润湿异性表面具有重要意义。从楔形表面、沟槽阵列表面、亲水-疏水表面、非对称形貌表面和生物表面等角度,详细介绍了润湿异性表面液滴定向运动的最新研究进展,展示了国内外典型研究工作,对未来研究工作的重点进行了展望。
  • 图  1  润湿异性表面液滴定向运动的潜在应用

    Figure  1.  Potential application of directional movement of droplets on wetting heterogeneous surface

    图  2  不同形式的楔形表面液滴定向运动

    Figure  2.  Directional movement of droplets on wedge-shaped surface of different forms

    图  3  楔形表面液滴定向运动及其3种不同时间状态的实验与仿真

    Figure  3.  Experiment and Simulation of the directional movement of the droplet on the wedge-shaped surface and its three different time states

    图  4  各向异性润湿的定向测量原理图[59]

    Figure  4.  Schematic of the directional measurement of anisotropic wetting [59]

    图  5  液滴沿沟槽阵列(微柱宽度80 μm)表面运动的滑动角与液滴体积的关系[53]

    Figure  5.  Relationships between the sliding angle of a droplet moving along the surface of the groove(micropillar width 80 μm) and the droplet volume [53]

    图  6  液滴运动示意图(沟槽阵列表面倾斜10°)[60]

    Figure  6.  Schematic diagram of droplet movement(the surface of the groove array is inclined 10°) [60]

    图  7  液滴滑动角随沟槽宽度的变化[60]

    Figure  7.  Change of droplet sliding angle with groove width[60]

    图  8  接触角与滑动角随两相邻沟槽之间微柱宽度的变化[59]

    Figure  8.  Change of contact angles and sliding angles with the width of micropillars between two adjacent grooves[59]

    图  9  微沟槽阵列表面液滴运动示意图[55]

    Figure  9.  Schematic diagram of droplet movement on the surface of microgrooves [55]

    图  10  亲水-疏水条带相间表面液滴运动

    Figure  10.  Movement of droplets on the surface of hydrophilic-hydrophobic strips

    图  11  超疏水表面润湿异性条带对液滴运动的影响

    Figure  11.  The effect of superhydrophobic surface wetting heterogeneous strip on droplet movement

    图  12  液滴在超疏水表面的亲水或疏水条带上运动

    Figure  12.  The droplet moves along on a hydrophilic or hydrophobic track on a superhydrophobic surface

    图  13  不同非对称微结构表面的液滴运动

    Figure  13.  Transport of droplets on different asymmetric microstructures

    图  14  振动表面液滴运动

    Figure  14.  Droplet movement on the vibrating surface

    图  15  不同条件下的液滴运动

    Figure  15.  Droplet movement under different conditions

    图  16  生物表面微结构[8-9, 116]

    Figure  16.  Biological surface microstructure[8-9, 116]

    图  17  猪笼草“投手”口缘表面微结构及其仿生

    Figure  17.  The microstructure of the peristome in the pitchers of Nepenthes alata and its related bionics

    图  18  瓶子草绒毛表面微结构及其仿生

    Figure  18.  The microstructure of Sarracenia trichome and its related bionics

  • [1] YOUNG T. Ⅲ. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [2] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. doi: 10.1021/ie50320a024
    [3] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
    [4] FURMIDGE C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. Journal of Colloid Science, 1962, 17(4): 309-324. doi: 10.1016/0095-8522(62)90011-9
    [5] WU H P, ZHU K, CAO B B, et al. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets[J]. Soft Matter, 2017, 13(16): 2995-3002. doi: 10.1039/c6sm02864k
    [6] BLIZNYUK O, JANSEN H P, KOOIJ E S, et al. Smart design of stripe-patterned gradient surfaces to control droplet motion[J]. Langmuir, 2011, 27(17): 11238-11245. doi: 10.1021/la201671w
    [7] SUN Q Q, WANG D H, LI Y N, et al. Surface charge printing for programmed droplet transport[J]. Nature Materials, 2019, 18(9): 936-941. doi: 10.1038/s41563-019-0440-2
    [8] ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. doi: 10.1038/nature08729
    [9] JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. doi: 10.1038/ncomms2253
    [10] XU C, FENG R, SONG F, et al. Continuous and controlled directional water transportation on a hydrophobic/superhydro-phobic patterned surface[J]. Chemical Engineering Journal, 2018, 352: 722-729. doi: 10.1016/j.cej.2018.07.073
    [11] CHEN T C, LIU H T, TENG S H, et al. Water transport control on a patterned superhydrophobic surface via laser direct writing[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(6): 061103. doi: 10.1116/1.4966617
    [12] RAY A, VARMA V B, WANG Z M, et al. Magnetic droplet merging by hybrid magnetic fields[J]. IEEE Magnetics Letters, 2016, 7: 1-5. doi: 10.1109/lmag.2016.2613065
    [13] LIU H, ZHENG S, YANG X, et al. Magnetic actuation multifunctional platform combining microdroplets delivery and stirring[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47642-47648. doi: 10.1021/acsami.9b18957
    [14] AN S, ZHU M Y, GU K, et al. Light-driven motion of water droplets with directional control on nanostructured surfaces[J]. Nanoscale, 2020, 12(7): 4295-4301. doi: 10.1039/c9nr09575f
    [15] XIAO Y, ZARGHAMI S, WAGNER K, et al. Moving droplets in 3D using light[J]. Advanced Materials, 2018, 30(35): 1801821. doi: 10.1002/adma.201801821
    [16] CHEN D L, LI J, ZHAO J Y, et al. Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection[J]. Journal of Colloid and Interface Science, 2018, 530: 274-281. doi: 10.1016/j.jcis.2018.06.081
    [17] ZHANG J C, CHEN F Z, LU Y, et al. Superhydrophilic-superhydrophobic patterned surfaces on glass substrate for water harvesting[J]. Journal of Materials Science, 2020, 55(2): 498-508. doi: 10.1007/s10853-019-04046-x
    [18] JU J, XIAO K, YAO X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Advanced Materials, 2013, 25(41): 5937-5942. doi: 10.1002/adma.201301876
    [19] WANG B, GUO Z G. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing[J]. Applied Physics Letters, 2013, 103(6): 063704. doi: 10.1063/1.4817922
    [20] LI K, JU J, XUE Z X, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water[J]. Nature Communications, 2013, 4: 2276. doi: 10.1038/ncomms3276
    [21] LI C X, WU L, YU C L, et al. Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops[J]. Angewandte Chemie (International Edition), 2017, 56(44): 13623-13628. doi: 10.1002/anie.201706665
    [22] LIU Y H, ANDREW M, LI J, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 2015, 6: 10034. doi: 10.1038/ncomms10034
    [23] HAO C L, LI J, LIU Y, et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces[J]. Nature Communications, 2015, 6: 7986. doi: 10.1038/ncomms8986
    [24] LI H Z, FANG W, LI Y N, et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces[J]. Nature Communications, 2019, 10: 950. doi: 10.1038/s41467-019-08919-2
    [25] JIAO K, LI X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. doi: 10.1016/j.pecs.2010.06.002
    [26] FU R S, PRESTON J S, PASAOGULLARI U, et al. Water transport across a polymer electrolyte membrane under thermal gradients[J]. Journal of the Electrochemical Society, 2011, 158(3): B303. doi: 10.1149/1.3530794
    [27] BAI F, WU J T, GONG G M, et al. Biomimetic "cactus spine" with hierarchical groove structure for efficient fog collection[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2015, 2(7): 1500047. doi: 10.1002/advs.201500047
    [28] TIAN Y, ZHU P G, TANG X, et al. Large-scale water collection of bioinspired cavity-microfibers[J]. Nature Commu-nications, 2017, 8(1): 1080. doi: 10.1038/s41467-017-01157-4
    [29] LI J, ZHOU Y L, WANG W B, et al. A bio-inspired superhydrophobic surface for fog collection and directional water transport[J]. Journal of Alloys and Compounds, 2020, 819: 152968. doi: 10.1016/j.jallcom.2019.152968
    [30] XU B, CHEN Z Q. Condensation on composite V-shaped surface with different gravity in nanoscale[J]. Microgravity Science and Technology, 2019, 31(5): 603-613. doi: 10.1007/s12217-019-09731-9
    [31] LUO H, LU Y, YIN S H, et al. Robust platform for water harvesting and directional transport[J]. Journal of Materials Chemistry A, 2018, 6(14): 5635-5643. doi: 10.1039/c8ta01096j
    [32] YOU I S, KANG S M, LEE S H, et al. Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device[J]. Angewandte Chemie (International Edition), 2012, 51(25): 6126-6130. doi: 10.1002/anie.201200329
    [33] ZHANG J L, HAN Y C. Shape-gradient composite surfaces: water droplets move uphill[J]. Langmuir, 2007, 23(11): 6136-6141. doi: 10.1021/la063376k
    [34] SONG D, BHUSHAN B. Water condensation and transport on bioinspired triangular patterns with heterogeneous wettability at a low temperature[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2138): 20180335. doi: 10.1098/rsta.2018.0335
    [35] SONG D, BHUSHAN B. Optimization of bioinspired triangular patterns for water condensation and transport[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 20190127. doi: 10.1098/rsta.2019.0127
    [36] SONG D, BHUSHAN B. Bioinspired triangular patterns forwater collection from fog[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 20190128. doi: 10.1098/rsta.2019.0128
    [37] DENG S Y, SHANG W F, FENG S L, et al. Controlled droplet transport to target on a high adhesion surface with multi-gradients[J]. Scientific Reports, 2017, 7: 45687. doi: 10.1038/srep45687
    [38] ZHENG Y F, CHENG J, ZHOU C L, et al. Droplet motion on a shape gradient surface[J]. Langmuir, 2017, 33(17): 4172-4177. doi: 10.1021/acs.langmuir.7b00227
    [39] XU B, CHEN Z Q. Droplet movement on a composite wedge-shaped surface with multi-gradients and different gravitational field by molecular dynamics[J]. Microgravity Science and Technology, 2018, 30(4): 571-579. doi: 10.1007/s12217-018-9641-6
    [40] WANG S, WANG C, PENG Z L, et al. Moving Behavior of Nanodroplets on Wedge-Shaped Functional Surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(3): 1798-1805. doi: 10.1021/acs.jpcc.8b09831
    [41] PAPADOPOULOU E, MEGARIDIS C M, WALTHER J H, et al. Ultrafast propulsion of water nanodroplets on patterned graphene[J]. ACS Nano, 2019, 13(5): 5465-5472. doi: 10.1021/acsnano.9b00252
    [42] XU B, CHEN Z Q. Molecular dynamics study of water vapor condensation on a composite wedge-shaped surface with multi wettability gradients[J]. International Communications in Heat and Mass Transfer, 2019, 105: 65-72. doi: 10.1016/j.icheatmasstransfer.2019.03.011
    [43] WANG X, XU B, CHEN Z. Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice Boltzmann method[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 30(2): 607-624. doi: 10.1108/hff-03-2019-0259
    [44] LIU M, YAO Y, YANG Y Z, et al. Directional transport behavior of droplets on wedge-shaped functional surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(20): 12736-12743. doi: 10.1021/acs.jpcc.9b00641
    [45] SEN U, CHATTERJEE S, GANGULY R, et al. Scaling laws in directional spreading of droplets on wettability-confined diverging tracks[J]. Langmuir, 2018, 34(5): 1899-1907. doi: 10.1021/acs.langmuir.7b03896
    [46] XU D, BA Y, SUN J J, et al. A numerical study of micro-droplet spreading behaviors on wettability-confined tracks using a three-dimensional phase-field lattice boltzmann model[J]. Langmuir, 2020, 36(1): 340-353. doi: 10.1021/acs.langmuir.9b02731
    [47] LIU Z A, ZHANG H, HAN Y Q, et al. Superaerophilic wedge-shaped channels with precovered air film for efficient subaqueous bubbles/jet transportation and continuous oxygen supplementation[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23808-23814. doi: 10.1021/acsami.9b08085
    [48] SONG J L, LIU Z A, WANG X Y, et al. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern[J]. Journal of Materials Chemistry A, 2019, 7(22): 13567-13576. doi: 10.1039/c9ta02095k
    [49] CHEN Y, HE B, LEE J, et al. Anisotropy in the wetting of rough surfaces[J]. Journal of Colloid and Interface Science, 2005, 281(2): 458-464. doi: 10.1016/j.jcis.2004.07.038
    [50] SOMMERS A D, JACOBI A M. Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface[J]. Journal of Micromechanics and Microengineering, 2006, 16(8): 1571-1578. doi: 10.1088/0960-1317/16/8/018
    [51] LI W, FANG G P, LI Y F, et al. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure[J]. The Journal of Physical Chemistry B, 2008, 112(24): 7234-7243. doi: 10.1021/jp712019y
    [52] SOMMERS A D, JACOBI A M. Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size[J]. Journal of Colloid and Interface Science, 2008, 328(2): 402-411. doi: 10.1016/j.jcis.2008.09.023
    [53] HE L, SUN Y Y, SUI X, et al. Modeling and measurement on the sliding behavior of microgrooved surfaces[J]. Langmuir, 2019, 35(43): 14133-14140. doi: 10.1021/acs.langmuir.9b02418
    [54] WANG X, WANG Z B, HENG L P, et al. Stable omniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles[J]. Advanced Functional Materials, 2020, 30(1): 1902686. doi: 10.1002/adfm.201902686
    [55] KUMAR M, BHARDWAJ R, SAHU K C. Motion of adroplet on an anisotropic microgrooved surface[J]. Langmuir, 2019, 35(8): 2957-2965. doi: 10.1021/acs.langmuir.8b03604
    [56] YANG X L, LIU X, LU Y, et al. Controllable water adhesion and anisotropic sliding on patterned superhydro-phobic surface for droplet manipulation[J]. The Journal of Physical Chemistry C: Nanomaterials and Interfaces, 2016, 120(13): 7233-7240. doi: 10.1021/acs.jpcc.6b02067
    [57] TAHER M A, PRASAD H, NAVANITH KRISHNAN P K, et al. Ellipsoidal droplet formation on anisotropic superhydro-phobic copper surface[J]. Surface Topography: Metrology and Properties, 2019, 7(3): 035001. doi: 10.1088/2051-672x/ab2d80
    [58] KWON D, LEE S, YEOM E. Experimental investigation on water repellency and anisotropic wettability of microgrooved polymer surfaces[J]. Experiments in Fluids, 2019, 60(11): 169. doi: 10.1007/s00348-019-2805-3
    [59] LIAN Z X, XU J K, YU Z J, et al. A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance[J]. Journal of Alloys and Compounds, 2019, 793: 326-335. doi: 10.1016/j.jallcom.2019.04.169
    [60] ZHANG P C, LIU H L, MENG J X, et al. Grooved organogel surfaces towards anisotropic sliding of water droplets[J]. Advanced Materials, 2014, 26(19): 3131-3135. doi: 10.1002/adma.201305914
    [61] DING Y, JIA L, PENG Q, et al. Critical sliding angle of water droplet on parallel hydrophobic grooved surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124083. doi: 10.1016/j.colsurfa.2019.124083
    [62] CHU K H, XIAO R, WANG E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces[J]. Nature Materials, 2010, 9(5): 413-417. doi: 10.1038/nmat2726
    [63] BORMASHENKO E, MUSIN A, WHYMAN G, et al. Wetting transitions and depinning of the triple line[J]. Langmuir, 2012, 28(7): 3460-3464. doi: 10.1021/la204424n
    [64] 乔小溪, 张向军, 陈平, 等. 微矩形凹槽表面液滴各向异性浸润行为的研究[J]. 物理学报, 2020, 69(3): 205-211.

    QIAO X X, ZHANG X J, CHEN P, et al. Influences of micro-groove size on surface anisotropic wetting behaviors[J]. Acta Physica Sinica, 2020, 69(3): 205-211.
    [65] SOMMERS A D, BREST T J, EID K F. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates[J]. Langmuir, 2013, 29(38): 12043-12050. doi: 10.1021/la402424d
    [66] ZHENG H X, HUANG S, LIU J Y, et al. One-step modification method to fabricate wettability patterns on aluminium substrate[J]. Micro & Nano Letters, 2016, 11(11): 697-701. doi: 10.1049/mnl.2016.0187
    [67] YAGHOUBI H, FOROUTAN M. Wettability of striped patterned mono-and multilayer graphene supported on platinum[J]. Applied Surface Science, 2020, 500: 144002. doi: 10.1016/j.apsusc.2019.144002
    [68] LV C, YANG C W, HAO P F, et al. Sliding of water droplets on microstructured hydrophobic surfaces[J]. Langmuir, 2010, 26(11): 8704-8708. doi: 10.1021/la9044495
    [69] MORITA M, KOGA T, OTSUKA H, et al. Macroscopic-wetting anisotropy on the line-patterned surface of fluoroalkylsilane monolayers[J]. Langmuir, 2005, 21(3): 911-918. doi: 10.1021/la0485172
    [70] DRELICH J, WILBUR J L, MILLER J D, et al. Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips[J]. Langmuir, 1996, 12(7): 1913-1922. doi: 10.1021/la9509763
    [71] SUZUKI S, NAKAJIMA A, TANAKA K, et al. Sliding behavior of water droplets on line-patterned hydrophobic surfaces[J]. Applied Surface Science, 2008, 254(6): 1797-1805. doi: 10.1016/j.apsusc.2007.07.171
    [72] NAKAJIMA A, NAKAGAWA Y, FURUTA T, et al. Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions[J]. Langmuir, 2013, 29(29): 9269-9275. doi: 10.1021/la401517v
    [73] HE L, LIANG W Y, WANG Z Q, et al. A three-dimensional model for analyzing the anisotropic wetting behavior of striped surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552: 67-74. doi: 10.1016/j.colsurfa.2018.05.008
    [74] SBRAGAGLIA M, BIFERALE L, AMATI G, et al. Slidingdrops across alternating hydrophobic and hydrophilic stripes[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2014, 89: 012406. doi: 10.1103/physreve.89.012406
    [75] ZHENG H X, HUANG S, LIU J Y, et al. Wettability-gradient surface fabricated by combining electrochemical etching and lithography[J]. Journal of Dispersion Science and Technology, 2017, 38(7): 979-984. doi: 10.1080/01932691.2016.1216441
    [76] YU C M, ZHU X B, LI K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605. doi: 10.1002/adfm.201701605
    [77] SEO J, LEE S, LEE J, et al. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4722-4729. doi: 10.1021/am2011756
    [78] YANG D, KRASOWSKA M, PRIEST C, et al. Dynamics of capillary-driven flow in open microchannels[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18761-18769. doi: 10.1021/jp2065826
    [79] XU Q F, WANG J N, SMITH I H, et al. Directing the transportation of a water droplet on a patterned super hydrophobic surface[J]. Applied Physics Letters, 2008, 93(23): 233112. doi: 10.1063/1.3039874
    [80] ZHANG H, LIU Y, HUA M, et al. A laser scanning method to control the location, shape, contact angle and sliding of water droplet on superhydrophobic surface[J]. Advanced Engineering Materials, 2019, 21(7): 1801375. doi: 10.1002/adem.201801375
    [81] YANG X L, SONG J L, ZHENG H X, et al. Anisotropic sliding on dual-rail hydrophilic tracks[J]. Lab on a Chip, 2017, 17(6): 1041-1050. doi: 10.1039/c7lc00028f
    [82] ZHU S W, BIAN Y C, WU T, et al. Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails[J]. Applied Physics Letters, 2020, 116(9): 093706. doi: 10.1063/1.5144593
    [83] HU H B, YU S X, SONG D. No-loss transportation of water droplets by patterning a desired hydrophobic path on a superhydrophobic surface[J]. Langmuir, 2016, 32(29): 7339-7345. doi: 10.1021/acs.langmuir.6b01654
    [84] HUANG L, WANG X Y, ZHAO C L, et al. Reversible lossless manipulation of water droplets with large-range volume[J]. Micro & Nano Letters, 2018, 13(7): 896-901. doi: 10.1049/mnl.2017.0789
    [85] HUANG S L, LI J, LIU L, et al. Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue[J]. Advanced Materials, 2019, 31(27): 1901417. doi: 10.1002/adma.201901417
    [86] SANDRE O, GORRE-TALINI L, AJDARI A, et al. Moving droplets on asymmetrically structured surfaces[J]. Physical Review E: Covering Statistical, Nonlinear, Biological, and Soft Matter Physics, 1999, 60(3): 2964. doi: 10.1103/physreve.60.2964
    [87] BUGUIN A, TALINI L, SILBERZAN P.Ratchet-like topological structures for the control of microdrops[J]. Applied Physics A: Materials Science & Processing, 2002, 75(2): 207-212. doi: 10.1007/s003390201322
    [88] DUNCOMBE T A, PARSONS J F, BÖHRINGER K F. Directed drop transport rectified from orthogonal vibrations via a flat wetting barrier ratchet[J]. Langmuir, 2012, 28(38): 13765-13770. doi: 10.1021/la3024309
    [89] GENG X R, YU X P, BAO L Y, et al. Directed transport of liquid droplets on vibrating substrates with asymmetric corrugations and patterned wettability: a dissipative particle dynamics study[J]. Molecular Simulation, 2020, 46(1): 33-40. doi: 10.1080/08927022.2019.1667498
    [90] SEKEROGLU K, GURKAN U A, DEMIRCI U, et al. Transport of a soft cargo on a nanoscale ratchet[J]. Applied Physics Letters, 2011, 99(6): 63703-637033. doi: 10.1063/1.3625430
    [91] SHASTRY A, TAYLOR D, BöHRINGER K F. Micro-structured surface ratchets for droplet transport[C]//TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference. 2007. doi: 10.1109/SENSOR.2007.4300393
    [92] SUN D, BÖHRINGER K F. EWOD-aided droplet transport on texture ratchets[J]. Applied Physics Letters, 2020, 116(9): 093702. doi: 10.1063/1.5142571
    [93] FENG S L, WANG S J, LIU C C, et al. Controlled droplet transport on a gradient adhesion surface[J]. Chemical Communications, 2015, 51(27): 6010-6013. doi: 10.1039/c5cc00467e
    [94] HOLMES H R, GOMEZ A E, BÖHRINGER K F. Timing and Synchronization of Droplets on Racthet Conveyors[C]//Proc of 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). 2016. doi: 10.1109/MEMSYS.2016.7421749
    [95] METTU S, CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir, 2008, 24(19): 10833-10837. doi: 10.1021/la801380s
    [96] SHASTRY A, CASE M J, BÖHRINGER K F. Directing droplets using microstructured surfaces[J]. Langmuir, 2006, 22(14): 6161-6167. doi: 10.1021/la0601657
    [97] SUN D, GOMEZ G, BÖHRINGER K F. Droplet manipulation using ac ewod-actuated anisotropic ratchet conveyor[C]//Proc of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXⅢ. 2019. doi: 10.1109/TRANSDUCERS.2019.8808468
    [98] DANIEL S, CHAUDHURY M K. Rectified motion of liquid drops on gradient surfaces induced by vibration[J]. Langmuir, 2002, 18(9): 3404-3407. doi: 10.1021/la025505c
    [99] YEH F W, YANG L J, HESS G Y, et al. The arrowed surface ratchets with hydrophobic parylene for droplet transportation[C]//NEMS'09: Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1 and 2. New York: IEEE, 2009: 359-362. doi: 10.1109/NEMS.2009.5068595
    [100] DUNCOMBE T A, PARSONS J F, BÖHRINGER K F. Droplet transport on flat chemically heterogeneous surfaces via periodic wetting barriers and vibration[C]//MEMS 2010: 23rd IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. New York: IEEE, 2010: 1043-1046. doi: 10.1109/MEMSYS.2010.5442388
    [101] HAO P F, LV C, ZHANG X W, et al. Driving liquid droplets on microstructured gradient surface by mechanical vibration[J]. Chemical Engineering Science, 2011, 66(10): 2118-2123. doi: 10.1016/j.ces.2011.02.015
    [102] QI L, NIU Y, RUCK C, et al. Mechanical-activated digital microfluidics with gradient surface wettability[J]. Lab on a Chip, 2019, 19(2): 223-232. doi: 10.1039/c8lc00976g
    [103] CHAMAKOS N T, KARAPETSAS G, PAPATHANASIOU A G. How asymmetric surfaces induce directional droplet motion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511: 180-189. doi: 10.1016/j.colsurfa.2016.09.078
    [104] DONG Y, HOLMES H R, BÖHRINGER K F.Converting vertical vibration of anisotropic ratchet conveyors into horizontal droplet motion[J]. Langmuir, 2017, 33(40): 10745-10752. doi: 10.1021/acs.langmuir.7b02504
    [105] DANIEL S, CHAUDHURY M K, DE GENNES P G. Vibration-actuated drop motion on surfaces for batch microfluidic processes[J]. Langmuir, 2005, 21(9): 4240-4248. doi: 10.1021/la046886s
    [106] COSTALONGA M, BRUNET P. Directional motion of vibrated sessile drops: a quantitative study[J]. Physical Review Fluids, 2020, 5(2): 023601. doi: 10.1103/physrevfluids.5.023601
    [107] HOLMES H R, BÖHRINGER K F. Transport velocity of droplets on ratchet conveyors[J]. Advances in Colloid and Interface Science, 2018, 255: 18-25. doi: 10.1016/j.cis.2017.08.009
    [108] HOLMES H R, GOMEZ A, BÖHRINGER K. Enabling droplet functionality on anisotropic ratchet conveyors[J]. Micromachines, 2017, 8(12): 363. doi: 10.3390/mi8120363
    [109] DUNCOMBE T A, ERDEM E Y, SHASTRY A, et al. Controlling liquid drops with texture ratchets[J]. Advanced Materials, 2012, 24(12): 1545-1550. doi: 10.1002/adma.201104446
    [110] NOBLIN X, KOFMAN R, CELESTINI F. Ratchetlike motion of a Shaken drop[J]. Physical Review Letters, 2009, 102(19): 194504. doi: 10.1103/physrevlett.102.194504
    [111] BORCIA R, BORCIA I D, BESTEHORN M. Can vibrations control drop motion?[J]. Langmuir, 2014, 30(47): 14113-14117. doi: 10.1021/la503415r
    [112] SAVVA N, KALLIADASIS S. Low-frequency vibrations of two-dimensional droplets on heterogeneous substrates[J]. Journal of Fluid Mechanics, 2014, 754: 515-549. doi: 10.1017/jfm.2014.409
    [113] KAVOUSANAKIS M E, CHAMAKOS N T, PAPATHANASIOU A G. Connection of intrinsic wettability and surface topography with the apparent wetting behavior and adhesion properties[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15056-15066. doi: 10.1021/acs.jpcc.5b00718
    [114] MOROZOV M, MANOR O. Vibration-driven mass transfer and dynamic wetting[J]. Current Opinion in Colloid & Interface Science, 2018, 36: 37-45. doi: 10.1016/j.cocis.2017.12.002
    [115] 胡海豹, 曹刚, 张梦卓, 等. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193. doi: 10.11896/cldb.19070008

    HU H B, CAO G, ZHANG M Z, et al. Research advance on directional motion behavior of solid surface droplets[J]. Materials Reports, 2020, 34(13): 13175-13193. doi: 10.11896/cldb.19070008
    [116] WAN Y L, CUI P, XU J K, et al. Directional water-collecting behavior of pine needle surface[J]. Materials Letters, 2019, 255: 126561. doi: 10.1016/j.matlet.2019.126561
    [117] CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85. doi: 10.1038/nature17189
    [118] LI C X, DAI H Y, GAO C, et al. Bioinspired inner microstructured tube controlled capillary rise[J]. Proceedings of the National Academy of Sciences of the United States of America(PNAS), 2019, 116(26): 12704-12709. doi: 10.1073/pnas.1821493116
    [119] CHEN H W, RAN T, GAN Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nature Materials, 2018, 17(10): 935-942. doi: 10.1038/s41563-018-0171-9
    [120] KIM S W, KIM J, PARK S S, et al. Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister[J]. Desalination, 2020, 479: 114314. doi: 10.1016/j.desal.2020.114314
    [121] PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. doi: 10.1038/35102108
    [122] NØRGAARD T, DACKE M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles[J]. Frontiers in Zoology, 2010, 7: 23. doi: 10.1186/1742-9994-7-23
    [123] ZHAI L, BERG M C, CEBECI F Ç, et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib desert beetle[J]. Nano Letters, 2006, 6(6): 1213-1217. doi: 10.1021/nl060644q
    [124] GARROD R P, HARRIS L G, SCHOFIELD W C E, et al. Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces[J]. Langmuir, 2007, 23(2): 689-693. doi: 10.1021/la0610856
    [125] DORRER C, RVHE J. Mimicking the stenocarabeetle-dewetting of drops from a patterned superhydrophobic surface[J]. Langmuir, 2008, 24(12): 6154-6158. doi: 10.1021/la800226e
    [126] PARK K C, KIM P, GRINTHAL A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016, 531(7592): 78-82. doi: 10.1038/nature16956
    [127] PRAKASH M, QUERE D, BUSH J W M. Surface tension transport of prey by feeding shorebirds: the capillary ratchet[J]. Science, 2008, 320(5878): 931-934. doi: 10.1126/science.1156023
    [128] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [129] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. doi: 10.1002/adma.200290020
    [130] FENG L, ZHANG Y N, XI J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. doi: 10.1021/la703821h
    [131] GUO Z G, LIU W M. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure[J]. Plant Science, 2007, 172(6): 1103-1112. doi: 10.1016/j.plantsci.2007.03.005
    [132] IVANOVA E P, HASAN J, WEBB H K, et al. Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings[J]. Small, 2012, 8(16): 2489-2494. doi: 10.1002/smll.201200528
    [133] LI X P, MANZ A. Duplex-imprinted nano well arrays for promising nanoparticle assembly[J]. Nanotechnology, 2018, 29(8): 085302. doi: 10.1088/1361-6528/aaa236
    [134] BARTHLOTT W, SCHIMMEL T, WIERSCH S, et al. The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 2010, 22(21): 2325-2328. doi: 10.1002/adma.200904411
    [135] ZHENG D Y, JIANG Y H, YU W T, et al. Salvinia-effect-inspired "sticky" superhydrophobic surfaces by meniscus-confined electrodeposition[J]. Langmuir, 2017, 33(47): 13640-13648. doi: 10.1021/acs.langmuir.7b03014
    [136] ZHOU K, LI D M, XUE P H, et al. One-step fabrication of Salvinia-inspired superhydrophobic surfaces with high adhesion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590: 124517. doi: 10.1016/j.colsurfa.2020.124517
  • 加载中
图(18)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  172
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18
  • 修回日期:  2020-08-15
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日