留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚声速压气机平面叶栅及其改型的吹风试验

蔡明 高丽敏 刘哲 黎浩学 陈顺

蔡明, 高丽敏, 刘哲, 等. 亚声速压气机平面叶栅及其改型的吹风试验[J]. 实验流体力学, 2021, 35(2): 36-42. doi: 10.11729/syltlx20200079
引用本文: 蔡明, 高丽敏, 刘哲, 等. 亚声速压气机平面叶栅及其改型的吹风试验[J]. 实验流体力学, 2021, 35(2): 36-42. doi: 10.11729/syltlx20200079
CAI Ming, GAO Limin, LIU Zhe, et al. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. doi: 10.11729/syltlx20200079
Citation: CAI Ming, GAO Limin, LIU Zhe, et al. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. doi: 10.11729/syltlx20200079

亚声速压气机平面叶栅及其改型的吹风试验

doi: 10.11729/syltlx20200079
基金项目: 

国家自然科学基金 51790512

国家科技重大专项 2017-ii-0001-0013

详细信息
    作者简介:

    蔡明(1992-), 男, 陕西延安人, 博士研究生。研究方向: 叶轮机械气动性能试验技术。通信地址: 陕西省西安市西北工业大学长安校区动力与能源学院(710129)。E-mail: mingcai@mail.nwpu.edu.cn

    通讯作者:

    高丽敏, E-mail: gaolm@nwpu.edu.cn

  • 中图分类号: V231.1

Cascade testing for a subsonic compressor linear cascade and its modification

  • 摘要: 为了对比某压气机原始叶型及其改型后的短弦叶型的气动性能,基于某高亚声速叶栅风洞对原型和改型叶型开展了平面叶栅吹风试验。试验前对不带叶栅和带叶栅试验件下试验段进口均匀性和出口周期性进行检查,确定满足试验要求的测量通道。通过吹风试验测量并分析原型叶栅和改型叶栅的出口总压、出口气流角以及叶片表面等熵马赫数分布。结果表明:相对于原始叶型,弦长缩短后叶型吸力面型线曲率变化增大,峰值马赫数后的气流逆压梯度较大,因此附面层内的气流分离损失更大;设计马赫数0.6时,短弦叶栅的低损失攻角范围比原型叶栅减小了约3°,改型叶栅和原型叶栅均表现出较好的负攻角特性;设计攻角下(i=0°),进口马赫数从0.4增大至0.7时,两套叶栅出口尾迹的深度逐渐增大,但尾迹宽度基本不变;达到或者超过临界马赫数0.8之后,原型和改型叶栅的尾迹宽度和深度均显著增大。
  • 图  1  NPU高亚声速平面叶栅风洞

    Figure  1.  The NPU high subsonic linear cascade wind tunnel

    图  2  基准叶型C01及改型C02的叶型几何图

    Figure  2.  Geometry of the baseline and modified airfoils

    图  3  两套叶栅试验件实物图

    Figure  3.  Linear cascade test rig of C01 and C02

    图  4  空风洞下试验段流场测量

    Figure  4.  Measurement of the flow field in the cascade-free wind tunnel

    图  5  不同周向位置叶栅来流参数沿展向分布

    Figure  5.  Spanwise distributions of the inflow parameters at different pitchwise positions

    图  6  不同攻角下进口中叶展马赫数沿叶栅周向分布

    Figure  6.  Pitchwise distributions of the inlet Mach number of C01 at midspan under different incidence angles

    图  7  叶栅出口总压损失和出气角分布

    Figure  7.  Pitchwise distributions of the total pressure loss and outlet flow angle

    图  8  不同攻角下叶栅表面等熵马赫数分布对比(Ma1=0.6)

    Figure  8.  Isentropic Mach number distributions under different incidence angles (Ma1=0.6)

    图  9  两套叶栅表面等熵马赫数分布对比(Ma1=0.8、i=0°)

    Figure  9.  Comparison of the Isentropic Mach number distributions between the baseline and modified airfoils under the design condition (Ma1=0.8, i=0°)

    图  10  不同马赫数下C01叶栅攻角特性

    Figure  10.  Loss characteristics of C01 at different inlet Mach numbers

    图  11  不同马赫数下C02叶栅攻角特性

    Figure  11.  Loss characteristics of C02 at different inlet Mach numbers

    图  12  两套叶栅的攻角特性

    Figure  12.  Comparison of the loss characteristics between the baseline and modified airfoils

    图  13  不同马赫数下叶栅的总压恢复系数分布(i=0°)

    Figure  13.  Distribution of the total pressure recovery coefficient of the cascade at different inlet Mach numbers(i=0°)

    表  1  叶栅设计参数

    Table  1.   Design parameters of test cascades

    设计参数 C01 C02
    进口几何角β1k/(°) 43 43
    出口几何角β2k/(°) 2.0 1.8
    进口马赫数Ma1 0.6 0.6
    安装角/(°) 21.5 21.4
    弦长/mm 55.5 47.2
    展弦比 1.8 2.1
    稠度 1.4 1.3
    叶片数 8 8
    下载: 导出CSV
  • [1] DUNAVANT J C, EMERY J C, WALCH H C, et al. High-speed cascade tests of the NACA 65-(12A10)10 and NACA 65-(12A2I8b)10 compressor blade sections[R]. NACA RM-L55I08, 1955.
    [2] EMERY J C, DUNAVANT J C. Two-dimensionalcascade tests of NACA 65-(CloA10)10 blade sections at typical compressor hub conditions for speeds up to choking[R]. NACA RM-L57H05, 1957.
    [3] LEGGETT J, PRIEBE S, SANDBERG R, et al. Detailed investigation of RANS and LES predictions of loss generation in an axial compressor cascade at off design incidences[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016. doi: 10.1115/GT2016-57972
    [4] LI R Y, GAO L M, MA C, et al. Cornerseparation dynamics in a high-speed compressor cascade based on detached-eddy simulation[J]. Aerospace Science and Technology, 2020, 99: 105730. doi: 10.1016/j.ast.2020.105730
    [5] LI J B, JI L C, YI W L. Experimental and numerical investigation on the aerodynamic performance of a compressor cascade using blended blade and end wall[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Confe-rence and Exposition. 2017. doi: 10.1115/GT2017-63879
    [6] MAO X, LIU B, YUAN F, et al. Numerical and experimental study of separation control by boundary layer aspiration in a highly-loaded axial compressor cascade[J]. Journal of Applied Fluid Mechanics, 2018, 11(2): 433-446. doi: 10.29252/jafm.11.02.27840
    [7] YU X J, LIU B J. Research on three-dimensional blade designs in an ultra-highly loaded low-speed axial compressor stage: Design and numerical investigations[J]. Advances in Mechanical Engineering, 2016, 8(10): 1-16. doi: 10.1177/1687814016674629
    [8] HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2013, 135(2): 021026. doi: 10.1115/1.4006605
    [9] KIESNER M, KING R. Multivariable closed-loop active flow control of a compressor stator cascade[J]. AIAA Journal, 2017, 55(10): 3371-3380. doi: 10.2514/1.J055728
    [10] 马昌友, 侯敏杰, 凌代军, 等. 平面扩压叶栅流场PIV与三孔尾迹探针对比测试研究[J]. 实验流体力学, 2014, 28(2): 45-50, 58. http://www.syltlx.com/CN/abstract/abstract10717.shtml

    MA C Y, HOU M J, LING D J, et al. Comparative study between PIV and three-hole wake probe measurements in the compressor plane cascade flow field[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 45-50, 58. http://www.syltlx.com/CN/abstract/abstract10717.shtml
    [11] 高丽敏, 高杰, 王欢, 等. PSP技术在叶栅叶片表面压力测量中的应用[J]. 工程热物理学报, 2011, 32(3): 411-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201103015.htm

    GAO L M, GAO J, WANG H, et al. Application of PSP technique to pressure measurement on cascade surface[J]. Journal of Engineering Thermophysics, 2011, 32(3): 411-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201103015.htm
    [12] 李仁康, 王如根, 何成, 等. 涡流发生器对高负荷压气机叶栅角区分离影响的实验研究[J]. 实验流体力学, 2017, 31(6): 22-28, 36. http://www.syltlx.com/CN/abstract/abstract11062.shtml

    LI R K, WANG R G, HE C, et al. Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 22-28, 36. http://www.syltlx.com/CN/abstract/abstract11062.shtml
    [13] 魏巍, 刘波, 杜炜, 等. 可控扩散叶型与双圆弧叶型实验对比研究[J]. 推进技术, 2017, 38(1): 61-68. doi: 10.13675/j.cnki.tjjs.2017.01.009

    WEI W, LIU B, DU W, et al. Experimental comparison of controlled diffusion airfoils with double circle airfoils[J]. Journal of Propulsion Technology, 2017, 38(1): 61-68. doi: 10.13675/j.cnki.tjjs.2017.01.009
    [14] 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. doi: 10.13675/j.cnki.tjjs.2017.03.007

    GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3): 525-531. doi: 10.13675/j.cnki.tjjs.2017.03.007
    [15] 高丽敏, 蔡明. 压气机叶型的风洞试验研究[J]. 风机技术, 2018, 60(4): 9-15. doi: 10.16492/j.fjjs.2018.04.0002

    GAO L M, CAI M. Experimental investigations of compressor airfoil on cascade wind tunnel[J]. Chinese Journal of Turbomachinery, 2018, 60(4): 9-15. doi: 10.16492/j.fjjs.2018.04.0002
    [16] 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897. doi: 10.13675/j.cnki.tjjs.2013.07.006

    LIU B J, YUAN C X, YU X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil[J]. Journal of Propulsion Technology, 2013, 34(7): 890-897. doi: 10.13675/j.cnki.tjjs.2013.07.006
    [17] 向宏辉, 葛宁, 侯敏杰, 等. 高来流马赫数单列叶栅改串列叶栅性能对比试验[J]. 航空动力学报, 2016, 31(11): 2757-2764. doi: 10.13224/j.cnki.jasp.2016.11.026

    XIANG H H, GE N, HOU M J, et al. Performance contrast experiment of prototype single cascade and redesign tandem cascade at high inlet Mach number[J]. Journal of Aerospace Power, 2016, 31(11): 2757-2764. doi: 10.13224/j.cnki.jasp.2016.11.026
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  208
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-11-09
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日