留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机的复杂地貌上空风场实测研究

吴红华 张亮 冯豪 胡昊辉 李正农

吴红华, 张亮, 冯豪, 等. 基于无人机的复杂地貌上空风场实测研究[J]. 实验流体力学, 2021, 35(2): 92-103. doi: 10.11729/syltlx20200055
引用本文: 吴红华, 张亮, 冯豪, 等. 基于无人机的复杂地貌上空风场实测研究[J]. 实验流体力学, 2021, 35(2): 92-103. doi: 10.11729/syltlx20200055
WU Honghua, ZHANG Liang, Feng Hao, et al. Wind field measurement over complex landforms based on Multi-rotor Unmanned Aircraft[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 92-103. doi: 10.11729/syltlx20200055
Citation: WU Honghua, ZHANG Liang, Feng Hao, et al. Wind field measurement over complex landforms based on Multi-rotor Unmanned Aircraft[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 92-103. doi: 10.11729/syltlx20200055

基于无人机的复杂地貌上空风场实测研究

doi: 10.11729/syltlx20200055
基金项目: 

国家自然科学基金 51678233

国家自然科学基金 51478179

详细信息
    作者简介:

    吴红华(1967-), 女, 硕士, 副教授, 硕士生导师。研究方向: 结构抗震抗风, 结构可靠度分析, 树木抗风抗风沙研究。通信地址: 湖南省长沙市湖南大学土木工程学院(410082)。E-mail: zhn88@263.net

    通讯作者:

    吴红华, E-mail: zhn88@263.net

  • 中图分类号: TU312.1;V211.52

Wind field measurement over complex landforms based on Multi-rotor Unmanned Aircraft

  • 摘要: 本文研究了利用多旋翼无人机搭载风速风向测量设备对不同地貌上空平面风场实测分析的方法。以北京市延庆区某试验基地内的测风塔为参考,首先对无人机测风准确性进行研究,其次取相同时间段内测风塔与不同测点位置无人机的实测风速风向数据进行正交分解处理,分析得到无人机和测风塔风速、湍流度的相互比值关系,通过测风塔数据和比值关系,可以推知空中不同测点的风速和风向数据,进而获得复杂地貌影响下的上空风场状况。实测结果表明:修正后无人机平均风速、平均风向与测风塔相比误差较小,无人机测量得到湍流度较测风塔更大,通过滑动平均法可以一定程度上减小无人机测得的湍流度;空中平面风场状况受地貌影响较大,复杂地貌上空风场波动更大。通过现场实测,初步验证了应用多旋翼无人机搭载风速仪在不同地貌上空实现空中平面风场测量的可行性,可为局部区域风场测量、风电场微观选址等提供新思路和新方法。
  • 图  1  实测地点

    Figure  1.  Test site

    图  2  现场实测系统

    Figure  2.  The field measurement system

    图  3  实测测点坐标系

    Figure  3.  Coordinate system of measured points

    图  4  风速、风向示意图

    Figure  4.  Sketch map of wind speeds and directions

    图  5  测风塔、修正后无人机风速风向时程图

    Figure  5.  Wind speed and direction time history of wind tower and modified UAV

    图  6  测风塔、滑动平均后无人机风速风向时程图

    Figure  6.  Wind speed and wind direction time history of wind tower and UAV after moving average

    图  7  风速比CS三维图

    Figure  7.  Three-dimensional graph of wind speed ratio CS

    图  8  风速比CS等值线图

    Figure  8.  Contour graph of wind speed ratio CS

    图  9  风向角比值CD三维图

    Figure  9.  Three-dimensional graph of wind direction ratio CD

    图  10  风向角比值CD等值线图

    Figure  10.  Contour graph of wind direction ratio CD

    图  11  计算湍流度比CT三维图

    Figure  11.  Three-dimensional graph of calculated turbulence ratio CT

    图  12  计算湍流度比CT等值线图

    Figure  12.  Contour graph of calculated turbulence ratio CT

    表  1  超声波风速仪参数

    Table  1.   Parameters of ultrasonic anemometer

    型号 风速测量 风向测量
    量程 精度 量程 精度
    SA210 0~50 m/s 0.5 m/s
    (v≤10 m/s),
    5%
    (v >10 m/s)
    0~359° ±4°
    (v≥3 m/s)
    WindSonic 0~60 m/s ±2% 0~359° ±3°
    (v =12 m/s)
    下载: 导出CSV

    表  2  风速标定结果

    Table  2.   Wind speed calibration results

    控制风速/(m·s-1) 4 6 8 10
    眼镜蛇探头风速/(m·s-1) 3.57 5.43 7.22 9.12
    SA210风速/(m·s-1) 3.58 5.41 7.25 9.11
    误差/% 0.28 -0.37 0.42 -0.11
    眼镜蛇探头风速/(m·s-1) 3.63 5.44 7.32 9.25
    WindSonic风速/(m·s-1) 3.65 5.42 7.34 9.28
    误差/% 0.42 -0.38 0.16 0.27
    下载: 导出CSV

    表  3  风速修正系数

    Table  3.   Correction coefficient of wind speed

    风速区间/(m·s-1) [0, 6.5) [6.5, 7.5) [7.5, 8.5) [8.5, 9.5) [9.5, 10.5) [10.5, 11.5) [11.5, 12.5)
    修正系数α 1.000 1.005 1.020 1.035 1.050 1.065 1.080
    下载: 导出CSV

    表  4  无人机风速修正前后数据对比

    Table  4.   Data comparison before and after MUA wind speed correction

    测风塔数据 无人机风速原始数据 无人机风速修正后数据
    数值 绝对误差 相对误差 数值 绝对误差 相对误差
    平均风速U 7.57 m/s 7.86 m/s 0.29 m/s 3.81% 7.61 m/s 0.04m/s 0.53%
    平均风向 124.35° 127.84° 3.49° 2.81% 127.91° 3.56° 2.86%
    ux 6.25 m/s 6.21 m/s -0.04 m/s -0.70% 6.00 m/s -0.25m/s -4.00%
    uy -4.27 m/s -4.82 m/s -0.55 m/s 12.84% -4.67 m/s -0.40 m/s 9.37%
    σx 1.45 m/s 1.90 m/s 0.45 m/s 31.03% 1.75 m/s 0.30 m/s 20.69%
    Ix 19.09% 24.14% 5.05% 26.45% 22.98% 3.89% 20.38%
    σy 1.16 m/s 1.48 m/s 0.32 m/s 27.59% 1.43 m/s 0.27 m/s 23.28%
    Iy 15.32% 18.90% 3.58% 23.37% 18.77% 3.45% 22.52%
    注:表中相对误差=100%×(无人机数据-测风塔数据)/测风塔数据;绝对误差=无人机数据-测风塔数据。
    下载: 导出CSV

    表  5  无人机风向修正前后数据对比

    Table  5.   Data comparison before and after MUA wind direction correction

    测风塔数据 无人机风向修正前数据 无人机风向修正后数据
    数值 绝对误差 相对误差 数值 绝对误差 相对误差
    平均风速U 7.57 m/s 7.61 m/s 0.04 m/s 0.53% 7.61 m/s 0.04m/s 0.53%
    平均风向 124.35° 127.91° 3.56° 2.86% 24.42° 0.07° 0.06%
    ux 6.25 m/s 6.00 m/s -0.25 m/s -4.00% 6.28 m/s 0.03 m/s 0.48%
    uy -4.27 m/s -4.67 m/s -0.40 m/s 9.37% -4.30 m/s -0.03 m/s 0.70%
    σx 1.45 m/s 1.75 m/s 0.30 m/s 20.69% 1.79 m/s 0.34 m/s 23.45%
    Ix 19.09% 22.98% 3.89% 20.38% 23.54% 4.45% 23.31%
    σy 1.16 m/s 1.43 m/s 0.27 m/s 23.28% 1.37 m/s 0.21 m/s 18.10%
    Iy 15.32% 18.77% 3.45% 22.52% 18.06% 2.74% 15.17%
    注:表中相对误差=100%×(无人机数据-测风塔数据)/测风塔数据;绝对误差=无人机数据-测风塔数据。
    下载: 导出CSV

    表  6  无人机数据滑动平均修正前后结果对比

    Table  6.   Comparison of results before and after MUA data moving average correction

    测风塔数据 滑动平均修正前数据 滑动平均修正后数据
    数值 绝对误差 相对误差 数值 绝对误差 相对误差
    平均风速U 7.57 m/s 7.61 m/s 0.04m/s 0.53% 7.61 m/s 0.04m/s 0.53%
    平均风向 124.35° 124.42° 0.07° 0.06% 124.42° 0.07° 0.06%
    ux 6.25 m/s 6.28 m/s 0.03m/s 0.48% 6.28 m/s 0.03m/s 0.48%
    uy -4.27 m/s -4.30 m/s -0.03 m/s 0.70% -4.30 m/s -0.03 m/s 0.70%
    σx 1.45 m/s 1.79 m/s 0.34 m/s 23.45% 1.67 m/s 0.22 m/s 15.17%
    Ix 19.09% 23.54% 4.45% 23.31% 21.99% 2.90% 15.19%
    σy 1.16 m/s 1.37 m/s 0.21 m/s 18.10% 1.21 m/s 0.05 m/s 4.31%
    Iy 15.32% 18.06% 2.74% 15.17% 15.93% 0.61% 3.98%
    注:表中相对误差=100%×(无人机数据-测风塔数据)/测风塔数据;绝对误差=无人机数据-测风塔数据
    下载: 导出CSV

    表  7  x方向风速分量比CSx

    Table  7.   The ratio of wind speed component in x direction CSx

    -100 -80 -60 -40 -20 0 20 40 60 80 100
    100 0.956 0.926 0.903 0.991 0.908 1.021 0.895 0.900 0.899 0.889 0.981
    80 0.914 0.970 1.045 0.993 0.925 1.002 1.048 0.919 0.967 0.893 0.904
    60 0.910 0.889 0.900 0.868 1.044 0.980 0.948 0.917 0.942 0.885 0.889
    40 0.912 0.991 1.000 0.931 0.881 0.910 0.930 0.956 0.955 0.864 0.927
    20 0.966 0.968 0.876 0.877 0.919 0.895 0.906 0.868 0.886 0.879 0.915
    0 0.892 0.966 0.956 0.920 0.949 1.000 0.939 0.947 0.934 0.903 0.918
    -20 0.982 0.943 0.987 0.889 0.924 0.930 0.959 0.961 0.979 0.873 0.993
    -40 1.020 0.952 0.938 0.896 0.952 0.902 1.027 0.941 0.943 0.940 0.917
    -60 1.014 0.904 0.885 0.954 0.909 0.931 1.098 0.976 0.962 0.999 0.853
    -80 0.925 0.943 0.918 0.955 0.970 0.884 1.025 0.928 0.954 0.971 0.960
    -100 0.986 0.993 0.959 1.021 0.880 0.928 1.014 0.975 0.900 0.926 1.054
    下载: 导出CSV

    表  8  y方向风速分量比CSy

    Table  8.   The ratio of wind speed component in y direction CSy

    -100 -80 -60 -40 -20 0 20 40 60 80 100
    100 0.734 0.671 2.498 0.563 1.266 0.924 0.993 1.045 0.925 1.022 0.930
    80 0.927 0.872 3.540 0.180 1.119 1.073 0.887 0.970 1.108 1.130 0.938
    60 0.730 3.181 0.987 1.166 0.708 1.093 1.074 0.913 0.965 0.988 1.164
    40 0.909 2.162 1.152 0.758 0.940 0.931 0.965 1.086 0.941 1.042 0.904
    20 1.051 0.676 1.251 0.897 3.313 0.959 1.138 1.047 1.021 0.858 0.997
    0 0.842 1.148 3.467 0.964 0.871 1.000 0.767 1.104 0.756 0.931 1.309
    -20 2.113 0.417 0.659 0.930 1.602 0.804 0.404 3.738 3.629 0.556 0.662
    -40 0.731 0.357 1.148 0.672 0.993 0.543 0.798 0.672 1.247 1.290 0.376
    -60 0.933 1.057 1.192 0.625 1.084 1.412 2.584 1.177 0.766 0.821 3.418
    -80 2.141 0.734 1.157 3.119 0.983 0.116 1.498 0.522 0.330 0.695 0.761
    -100 0.894 0.887 0.669 0.702 0.693 0.506 1.438 0.865 1.278 0.880 1.473
    下载: 导出CSV

    表  9  风向比CD

    Table  9.   The ratio of wind direction CD

    -100 -80 -60 -40 -20 0 20 40 60 80 100
    100 0.979 0.988 0.987 0.989 0.987 1.008 0.988 0.979 0.991 0.981 1.000
    80 1.001 0.991 0.992 0.988 1.002 0.995 1.009 0.988 0.984 0.977 0.995
    60 0.981 0.977 0.994 1.000 0.987 0.988 0.987 0.995 0.993 0.986 0.981
    40 1.000 0.987 0.997 0.995 1.005 0.997 0.993 0.984 0.997 0.981 0.998
    20 1.002 0.988 0.979 1.001 0.991 0.994 0.978 0.982 0.983 0.998 0.990
    0 0.995 1.008 0.996 1.002 0.996 1.000 1.007 0.986 1.015 0.993 0.972
    -20 1.005 0.982 0.995 1.005 1.003 0.996 0.984 1.012 0.985 0.996 1.002
    -40 0.995 0.986 1.007 0.986 1.004 0.994 1.005 1.011 1.015 1.008 0.986
    -60 1.001 0.997 0.994 1.000 0.990 0.982 0.985 0.995 1.004 1.002 1.003
    -80 0.987 1.001 0.999 0.987 1.000 0.979 0.998 1.008 1.008 1.004 0.997
    -100 0.996 0.997 0.990 0.994 0.991 0.981 1.002 0.973 0.990 1.000 0.997
    下载: 导出CSV

    表  10  x方向湍流度分量比CTx

    Table  10.   The ratio of turbulence component in x direction CTx

    -100 -80 -60 -40 -20 0 20 40 60 80 100
    100 1.074 1.365 0.853 1.209 0.844 1.119 1.281 1.039 1.355 0.878 1.187
    80 1.281 1.314 1.057 1.047 1.050 0.769 0.678 0.830 0.989 1.123 0.975
    60 1.041 1.106 0.879 0.908 0.970 1.045 0.946 0.925 1.039 0.998 1.537
    40 1.111 1.192 1.186 0.811 1.226 0.827 0.948 1.123 0.553 1.297 1.010
    20 1.172 1.099 1.155 1.144 0.851 0.753 1.027 1.171 1.172 0.747 1.215
    0 1.123 0.935 0.917 1.269 0.722 1.000 0.942 0.916 1.250 0.947 0.917
    -20 0.633 1.019 1.028 1.164 0.976 1.096 1.431 1.644 0.714 1.260 1.155
    -40 0.932 0.960 0.671 0.816 0.642 0.663 0.540 1.017 1.285 1.194 1.306
    -60 0.993 1.126 0.699 0.731 0.920 1.038 0.806 1.034 0.789 0.755 0.994
    -80 1.005 0.931 0.953 0.764 0.565 0.772 0.755 0.821 1.319 0.874 0.697
    -100 0.784 0.665 0.753 1.316 0.737 1.449 0.881 0.855 0.949 1.286 0.945
    下载: 导出CSV

    表  11  y方向湍流度分量比CTy

    Table  11.   The ratio of turbulence component in y direction CTy

    -100 -80 -60 -40 -20 0 20 40 60 80 100
    100 0.814 1.013 0.682 1.242 1.337 0.617 1.245 1.074 0.613 0.498 0.691
    80 0.693 0.579 0.955 0.865 0.716 1.011 0.804 0.769 1.035 0.855 1.062
    60 1.050 0.866 1.043 0.439 0.568 0.944 1.035 1.010 0.800 0.898 0.749
    40 0.695 0.740 0.580 1.217 0.517 1.185 1.066 0.746 0.691 0.770 0.689
    20 0.900 0.609 0.454 0.860 0.751 1.225 0.671 1.615 1.130 0.733 0.408
    0 0.694 1.134 0.942 0.831 1.151 1.000 1.112 0.774 0.791 1.035 1.198
    -20 0.791 0.541 0.911 1.044 1.026 0.832 1.165 1.047 1.328 1.064 1.091
    -40 0.891 1.278 0.912 0.818 0.774 0.999 1.029 0.805 0.998 0.469 0.789
    -60 0.754 0.905 0.713 0.583 1.211 0.757 1.076 1.195 0.374 1.240 1.175
    -80 1.084 0.704 0.676 1.240 0.731 0.873 1.012 1.022 0.780 0.636 1.091
    -100 0.467 0.872 0.644 0.594 0.954 0.953 1.270 1.322 0.597 1.007 1.019
    下载: 导出CSV
  • [1] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001: 47-49.

    HUANG B C. Principle and application of wind resistance analysis[M]. Shanghai: Tongji University Press, 2001: 47-49.
    [2] 陈爱, 刘宏昭, 杨迎超, 等. 复杂地形条件下风力机微观选址[J]. 太阳能学报, 2012, 33(5): 782-788. doi: 10.3969/j.issn.0254-0096.2012.05.013

    CHEN A, LIU H Z, YANG Y C, et al. Micro-siting technique forwind turbines under complex terrain[J]. Acta Energiae Solaris Sinica, 2012, 33(5): 782-788. doi: 10.3969/j.issn.0254-0096.2012.05.013
    [3] REN H H, LAIMA S J, CHEN W L, et al. Numerical simulation and prediction of spatial wind field under complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180: 49-65. doi: 10.1016/j.jweia.2018.07.012
    [4] PALMA J M L M, CASTRO F A, RIBEIRO L F, et al. Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2308-2326. doi: 10.1016/j.jweia.2008.03.012
    [5] 雷若冰, 徐箭, 孙辉, 等. 基于相关性分析的风电场群风速分布预测方法[J]. 电力自动化设备, 2016, 36(5): 134-140. doi: 10.16081/j.issn.1006-6047.2016.05.023

    LEI R B, XU J, SUN H, et al. Wind speed distribution forecasting based on correlation analysis for wind farm group[J]. Electric Power Automation Equipment, 2016, 36(5): 134-140. doi: 10.16081/j.issn.1006-6047.2016.05.023
    [6] 胡尚瑜, 李秋胜. 低矮房屋风荷载实测研究(I)——登陆台风近地边界层风特性[J]. 土木工程学报, 2012, 45(2): 77-84. doi: 10.15951/j.tmgcxb.2012.02.020

    HU S Y, LI Q S. Field measurements of wind loads on a low-rise building: Part I: Near-surface boundary layer wind characteristics of landfalltyphoons[J]. China Civil Engineering Journal, 2012, 45(2): 77-84. doi: 10.15951/j.tmgcxb.2012.02.020
    [7] JING H M, LIAO H L, MA C M, et al. Field measurement study of wind characteristics at different measuring positions in a mountainous valley[J]. Experimental Thermal and Fluid Science, 2020, 112: 109991. doi: 10.1016/j.expthermflusci.2019.109991
    [8] 李正农, 余蜜, 吴红华, 等. 某低矮模型房屋实测风场和风压的相关性研究[J]. 湖南大学学报(自然科学版), 2016, 43(5): 70-78. doi: 10.3969/j.issn.1674-2974.2016.05.009

    LI Z N, YU M, WU H H, et al. Correlation research of the measured wind field and wind pressure of a low-rise building[J]. Journal of Hunan University (Natural Sciences), 2016, 43(5): 70-78. doi: 10.3969/j.issn.1674-2974.2016.05.009
    [9] HUANG B, LI Z N, ZHAO Z F, et al. Near-ground impurity-free wind and wind-driven sand of photovoltaic power stations in a desert area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 483-502. doi: 10.1016/j.jweia.2018.06.017
    [10] 李正农, 吴卫祥, 王志峰. 北京郊外近地面风场特性实测研究[J]. 建筑结构学报, 2013, 34(9): 82-90. doi: 10.14006/j.jzjgxb.2013.09.010

    LI Z N, WU W X, WANG Z F. Field measurements of wind characteristics near ground in Beijing suburbs[J]. Journal of Building Structures, 2013, 34(9): 82-90. doi: 10.14006/j.jzjgxb.2013.09.010
    [11] HOLLAND G J, WEBSTER P J, CURRY J A, et al. The aerosonde robotic aircraft: A new paradigm for environmental observations[J]. Bulletin of the American Meteorological Society, 2001, 82(5): 889-902. doi: 10.1175/1520-0477(2001)0822.3.CO;2
    [12] 马舒庆, 汪改, 潘毅. 微型无人驾驶飞机探空初步试验研究[J]. 南京气象学院学报, 1997, 20(2): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.004.htm

    MA S Q, WANG G, PAN Y. Experiments on robot craft sounding[J]. Journal of Nanjing Institute of Meteorology, 1997, 20(2): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.004.htm
    [13] 周伟静, 沈怀荣. 一种基于小型无人机的风场测量方法[J]. 测试技术学报, 2009, 23(4): 297-302. doi: 10.3969/j.issn.1671-7449.2009.04.004

    ZHOU W J, SHEN H R. A wind measuring method based on a mini-UAV[J]. Journal of Test and Measurement Technology, 2009, 23(4): 297-302. doi: 10.3969/j.issn.1671-7449.2009.04.004
    [14] BRUSCHI P, PIOTTO M, DELL'AGNELLO F, et al. Wind speed and direction detection by means of solid-state anemometers embedded on small quadcopters[J]. Procedia Engineering, 2016, 168: 802-805. doi: 10.1016/j.proeng.2016.11.274
    [15] 李正农, 胡昊辉, 沈义俊. 六旋翼无人机旋翼转动对测风准确性的影响研究[J]. 实验流体力学, 2019, 33(6): 7-14. doi: 10.11729/syltlx20190047

    LI Z N, HU H H, SHEN Y J. The influence of rotor rotation of hexacopter on wind measurement accuracy[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 7-14. doi: 10.11729/syltlx20190047
    [16] 裴益轩, 郭民. 滑动平均法的基本原理及应用[J]. 火炮发射与控制学报, 2001, 22(1): 21-23. doi: 10.3969/j.issn.1673-6524.2001.01.007

    PEI Y X, GUO M. The fundamental principle and application of sliding average method[J]. Gun Launch & Control Journal, 2001, 22(1): 21-23. doi: 10.3969/j.issn.1673-6524.2001.01.007
  • 加载中
图(12) / 表(11)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  83
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-12
  • 修回日期:  2020-07-20
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日