留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴碰撞超声振动曲面的实验研究

张海翔 何枫 张锡文 郝鹏飞

张海翔, 何枫, 张锡文, 等. 液滴碰撞超声振动曲面的实验研究[J]. 实验流体力学, 2020, 34(4): 1-8. doi: 10.11729/syltlx20200036
引用本文: 张海翔, 何枫, 张锡文, 等. 液滴碰撞超声振动曲面的实验研究[J]. 实验流体力学, 2020, 34(4): 1-8. doi: 10.11729/syltlx20200036
ZHANG Haixiang, HE Feng, ZHANG Xiwen, et al. Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 1-8. doi: 10.11729/syltlx20200036
Citation: ZHANG Haixiang, HE Feng, ZHANG Xiwen, et al. Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 1-8. doi: 10.11729/syltlx20200036

液滴碰撞超声振动曲面的实验研究

doi: 10.11729/syltlx20200036
基金项目: 

国家自然科学基金 11635005

国家自然科学基金 11632009

国家重点研发计划 2016YFC1100300

国家重点研发计划 2017YFC0111100

结冰与防除冰重点实验室开放课题 AIADL20180101

国家数值风洞工程项目 NNW2019ZT2-B26

详细信息
    作者简介:

    张海翔(1993-), 男, 河南卫辉人, 博士研究生。研究方向:液滴碰撞, 结冰与防/除冰。通信地址:北京市海淀区清华大学航天航空学院流体力学研究所(100084)。E-mail:hx-zhang17@mails.tsinghua.edu.cn

    通讯作者:

    郝鹏飞, E-mail: haopf@mail.tsinghua.edu.cn

  • 中图分类号: O359+.2

Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces

  • 摘要: 通过实验研究了超声振动曲面上液滴碰撞的动力学行为。对边缘飞溅、表面飞溅以及毛细波、空化和子液滴回弹等复杂物理现象的产生机理和条件进行了分析,得到了超声振动曲面上发生边缘飞溅的临界曲线,并发现由于气动力的作用,超声振动曲面上发生边缘飞溅的临界超声振幅要小于平面情况。利用图像处理技术得到了不同条件下超声振动曲面对碰撞液滴的驱离效率以及飞溅液滴的尺寸分布。实验结果表明:碰撞液滴的驱离效率随振动曲面超声振幅的增大而增大,且呈线性增长;在高速碰撞中,碰撞速度几乎不影响超声振动曲面的液滴驱离效率;随着超声振幅的增加,飞溅液滴的平均尺寸增加。通过常温液滴与过冷液滴的碰撞实验对比,发现温度对超声振动曲面上液滴的动态碰撞过程影响较小。在过冷条件下,液滴驱离效率会略低于常温条件下,但仍能够持续有效地将液滴驱离表面,从而抑制冰层的增厚,说明超声振动曲面具有防水防冰的应用潜能。
  • 图  1  不同条件下的实验装置示意图

    Figure  1.  Schematic diagrams of two sets of the experimental setup under different conditions

    图  2  液滴在不同条件下碰撞超声振动曲面的动态过程(f=28 kHz)

    Figure  2.  Impact dynamics of droplets on ultrasonically vibrating curve surfaces

    图  3  飞溅模式示意图

    Figure  3.  Schematic diagram of the splash modes

    图  4  液滴在超声振动平面和曲面上发生边缘飞溅的临界曲线

    Figure  4.  The critical curves of the edge splash on the ultrasonically vibrating flat and curve surfaces

    图  5  子液滴回弹示意图

    Figure  5.  Schematic diagram of the sub-droplet rebound

    图  6  不同碰撞速度下驱离效率随超声振福的变化曲线

    Figure  6.  The expelling efficiency as a function of the ultrasonic amplitude at different impact velocities

    图  7  不同超声振幅下驱离效率随碰撞速度的变化曲线

    Figure  7.  The expelling efficiency as a function of the impact velocity with different ultrasonic amplitudes

    图  8  不同碰撞速度下飞溅液滴的尺寸随超声振幅的变化

    Figure  8.  The size distribution of the secondary droplets as a function of the ultrasonic amplitude at different impact velocities

    图  9  液滴在不同温度条件下碰撞超声振动曲面的动态过程示意图(f=28 kHz,U0=2.80 m/s,A0=17 μm)

    Figure  9.  Impact dynamics of droplets with different temperatures on ultrasonically vibrating curve surfaces (f=28 kHz, U0=2.80 m/s, A0=17 μm)

    图  10  不同温度条件下飞溅液滴的尺寸随超声振幅的变化规律(U0=2.80 m/s)

    Figure  10.  The size distribution of the secondary droplets as a function of the ultrasonic amplitude at different temperatures (U0=2.80 m/s)

    图  11  不同温度条件下驱离效率的对比

    Figure  11.  The expelling efficiency as a function of the ultrasonic amplitude at different impact velocities

  • [1] GAETE-GARRETÓN L, BRICEÑO-GUTIÉRREZ D, VARGAS-HERNÁNDEZ Y, et al. Ultrasonic atomization of distilled water[J]. The Journal of the Acoustical Society of America, 2018, 144(1):222-227. doi: 10.1121/1.5045558
    [2] GHOLAMPOUR N, BRIAN D, ESLAMIAN M. Tailoring characteristics of PEDOT:PSS coated on glass and plastics by ultrasonic substrate vibration posttreatment[J]. The Coatings, 2018, 8(10):337. doi: 10.3390/coatings8100337
    [3] O'SULLIVAN J J, NORWOOD E, O'MAHONY J A, et al. Atomisation technologies used in spray drying in the dairy industry:A review[J]. Journal of Food Engineering, 2019, 243:57-69. doi: 10.1016/j.jfoodeng.2018.08.027
    [4] DEEPU P, PENG C, MOGHADDAM S. Dynamics of ultrasonic atomization ofdroplets[J]. Experimental Thermal and Fluid Science, 2018, 92:243-247. doi: 10.1016/j.expthermflusci.2017.11.021
    [5] DEEPU P, BASU S, KUMAR R. Dynamics and fracture of ligaments from a droplet on a vibratingsurface[J]. Physics of Fluids, 2013, 25(8):082106. doi: 10.1063/1.4817542
    [6] DOUADY S. Experimental study of the Faraday instability[J]. Journal of Fluid Mechanics, 1990, 221:383-409. doi: 10.1017/S0022112090003603
    [7] ADOU A E, TUCKERMAN L S. Faraday instability on a sphere:Floquet analysis[J]. Journal of Fluid Mechanics, 2016, 805:591-610. doi: 10.1017/jfm.2016.542
    [8] LANG R J. Ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1962, 34(1):6-8. doi: 10.1121/1.1909020
    [9] PESKIN R L, RACO R J. Ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1963, 35(9):1378-1381. doi: 10.1121/1.1918700
    [10] LI Y K, UMEMURA A. Threshold condition for spray formation by Faradayinstability[J]. Journal of Fluid Mechanics, 2014, 759:73-103. doi: 10.1017/jfm.2014.569
    [11] LI Y K, UMEMURA A. Two-dimensional numerical investigation on the dynamics of ligament formation by Faradayinstability[J]. International Journal of Multiphase Flow, 2014, 60:64-75. doi: 10.1016/j.ijmultiphaseflow.2013.12.002
    [12] JAMES A J, VUKASINOVIC B, SMITH M K, et al. Vibration-induced drop atomization and bursting[J]. Journal of Fluid Mechanics, 2003, 476:1-28. doi: 10.1017/S0022112002002835
    [13] JAMES A J, SMITH M K, GLEZER A R I. Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection[J]. Journal of Fluid Mechanics, 2003, 476:29-62. doi: 10.1017/S0022112002002860
    [14] DEEPU P, BASU S, SAHA A, et al. Spreading and atomization of droplets on a vibrating surface in a standing pressure field[J]. Applied Physics Letters, 2012, 101(14):143108. doi: 10.1063/1.4757567
    [15] LIU F S, KANG N, LI Y K, et al. Experimental investigation on the spray characteristics of a droplet under sinusoidal inertial force[J]. Fuel, 2018, 226:156-162. doi: 10.1016/j.fuel.2018.04.008
    [16] LIU F S, KANG N, LI Y K, et al. Experimental investigation on the atomization of a spherical droplet induced by Faraday instability[J]. Experimental Thermal and Fluid Science, 2019, 100:311-318. doi: 10.1016/j.expthermflusci.2018.09.016
    [17] WANG Z J. Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line andaircraft[J]. Energy and Buildings, 2017, 140:42-49. doi: 10.1016/j.enbuild.2017.01.072
    [18] ZENG J, SONG B L. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbineblades[J]. Renewable Energy, 2017, 113:706-712. doi: 10.1016/j.renene.2017.06.045
    [19] GAO P H, CHENG B, ZHOU X Y, et al. Study on droplet freezing characteristic by ultrasonic[J]. Heat and Mass Transfer, 2017, 53(5):1725-1734. doi: 10.1007/s00231-016-1934-y
    [20] 李栋, 陈振乾.超声波瞬间脱除冷表面冻结液滴的试验研究[J].化工学报, 2013, 64(8):2730-2735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201308004

    LI D, CHEN Z Q. Instantaneous removal of frozen water droplets from cold surface by means of ultrasonicvibration[J]. Journal of Chemical Industry and Engineering (China), 2013, 64(8):2730-2735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201308004
    [21] LI D, CHEN Z Q. Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonicvibration[J]. Experimental Thermal and Fluid Science, 2014, 53:17-25. doi: 10.1016/j.expthermflusci.2013.10.005
    [22] 颜健, 李录平, 雷利斌, 等.风力机桨叶超声波除冰实验技术研究及其应用[J].可再生能源, 2015, 33(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncny201501013

    YAN J, LI L P, LEI L B, et al. Experimental research on ultrasonic de-icing for wind turbine blades and its application[J]. Renewable Energy, 2015, 33(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncny201501013
    [23] PALACIOS J, SMITH E C, ROSE J L, et al. Ultrasonic de-icing of wind-tunnel impact icing[J]. Journal of Aircraft, 2011, 48(3):1020-1027. doi: 10.2514/1.C031201
    [24] PALACIOS J, SMITH E C, ROSE J L, et al. Instantaneous de-icing of freezer ice via ultrasonic actuation[J]. AIAA Journal, 2011, 49(6):1158-1167. doi: 10.2514/1.J050143
    [25] ZHANG H X, ZHANG X W, YI X, et al. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces[J]. Experimental Thermal and Fluid Science, 2020, 112, 110019. doi: 10.1016/j.expthermflusci.2019.110019
    [26] 韩龙伸.超声波除冰方法与试验研究[D].杭州: 杭州电子科技大学, 2013.

    HAN L S. Research on ultrasonic deicing method and itsexperiment[D]. Hangzhou: Hangzhou Dianzi University, 2013.
    [27] KOOIJ S, ASTEFANEI A, CORTHALS G L, et al. Size distributions of droplets produced by ultrasonic nebulizers[J]. Scientific Reports, 2019, 9(1):6128. doi: 10.1038/s41598-019-42599-8
    [28] CHARALAMPOUS G, HARDALUPAS Y. Collisions of droplets on sphericalparticles[J]. Physics of Fluids, 2017, 29(10):103305. doi: 10.1063/1.5005124
    [29] ZHANG R, HAO P F, ZHANG X W, et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 2018, 122:395-402. doi: 10.1016/j.ijheatmasstransfer.2018.01.076
    [30] WANG Y, BOUROUIBA L. Unsteady sheet fragmentation:droplet sizes andspeeds[J]. Journal of Fluid Mechanics, 2018, 848:946-967. doi: 10.1017/jfm.2018.359
  • 加载中
图(11)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  180
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日