留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

捆绑式运载火箭跨声速气动阻尼特性试验研究

季辰 吴彦森 侯英昱 朱剑 刘文滨 白葵 刘子强

季辰, 吴彦森, 侯英昱, 等. 捆绑式运载火箭跨声速气动阻尼特性试验研究[J]. 实验流体力学, 2020, 34(6): 24-31. doi: 10.11729/syltlx20200034
引用本文: 季辰, 吴彦森, 侯英昱, 等. 捆绑式运载火箭跨声速气动阻尼特性试验研究[J]. 实验流体力学, 2020, 34(6): 24-31. doi: 10.11729/syltlx20200034
JI Chen, WU Yansen, HOU Yingyu, et al. Experimental study of aerodynamic damping characteristics of a launch vehicle with boosters in transonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 24-31. doi: 10.11729/syltlx20200034
Citation: JI Chen, WU Yansen, HOU Yingyu, et al. Experimental study of aerodynamic damping characteristics of a launch vehicle with boosters in transonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 24-31. doi: 10.11729/syltlx20200034

捆绑式运载火箭跨声速气动阻尼特性试验研究

doi: 10.11729/syltlx20200034
基金项目: 

国家自然科学基金 11702285

详细信息
    作者简介:

    季辰(1982-), 男, 博士, 高级工程师。研究方向:气动弹性试验和分析。通信地址:北京7201信箱(100074)。E-mail:jichen167@hotmail.com

    通讯作者:

    季辰, E-mail: jichen167@hotmail.com

  • 中图分类号: V411.7

Experimental study of aerodynamic damping characteristics of a launch vehicle with boosters in transonic flow

  • 摘要: 以某带助推的捆绑式运载火箭模型为研究对象,通过试验研究了该带助推的细长体弹性模型在不同马赫数和迎角下的一阶自由-自由弯曲气动阻尼特性和频率变化特性,并采用振型类似、频率降低的模型研究了减缩频率变化对气动阻尼的影响。试验马赫数范围0.70~1.05,试验迎角范围0°~10°。研究表明:迎角对火箭一阶自由-自由弯曲模态的气动阻尼和频率有影响,但规律并不明显;一阶自由-自由弯曲模态的气动阻尼受马赫数影响,并在马赫数0.90附近出现跨声速凹坑现象;一阶模态频率随马赫数增加呈下降趋势,但下降数值较小;减缩频率对气动阻尼有影响,在马赫数0.70~0.90范围内和马赫数1.00之后,气动阻尼随着减缩频率的增加而降低,在马赫数0.92~0.98范围内,气动阻尼随着减缩频率的增加而增加。
  • 图  1  半刚性模型气动阻尼试验

    Figure  1.  Aerodynamic damping test on a semi-rigid model

    图  2  全弹性模型气动阻尼试验

    Figure  2.  Aerodynamic damping test on an aeroelastic model

    图  3  运载火箭梁-质量模型

    Figure  3.  Beam-mass model of a launch vehicleBeam-mass model of a launch vehicle

    图  4  运载火箭实物与弹性模型一阶自由-自由弯曲振型

    Figure  4.  Mode shapes of the first free-free bending mode of the launch vehicle and elastic model

    图  5  运载火箭实物与弹性模型二阶自由-自由弯曲振型

    Figure  5.  Mode shapes of the second free-free bending mode of the launch vehicle and elastic model

    图  6  信号发生和数据采集系统

    Figure  6.  Signal generation and data acquisition system

    图  7  风洞试验纹影

    Figure  7.  Schlieren photograph of the wind tunnel test

    图  8  试验模型一阶自由-自由弯曲振型

    Figure  8.  Mode shapes of the first free-free bending mode of the test models

    图  9  气动阻尼试验结构时域响应(一阶,Ma=0.70)

    Figure  9.  Structural time response in aerodynamic damping test (1st mode, Ma=0.70)

    图  10  气动阻尼试验结构时域响应(一阶,Ma=0.75)

    Figure  10.  Structural time response in aerodynamic damping test (1st mode, Ma=0.75)

    图  11  气动阻尼试验结构时域响应(一阶, Ma=0.88)

    Figure  11.  Structural time response in aerodynamic damping test (1st mode, Ma=0.88)

    图  12  气动阻尼试验结构时域响应(一阶, Ma=0.90)

    Figure  12.  Structural time response in aerodynamic damping test (1st mode, Ma=0.90)

    图  13  气动阻尼试验结构时域响应(一阶, Ma=0.92)

    Figure  13.  Structural time response in aerodynamic damping test (1st mode, Ma=0.92)

    图  14  气动阻尼试验结构时域响应(一阶, Ma=0.96)

    Figure  14.  Structural time response in aerodynamic damping test (1st mode, Ma=0.96)

    图  15  气动阻尼试验结构时域响应(一阶, Ma=0.98)

    Figure  15.  Structural time response in aerodynamic damping test (1st mode, Ma=0.98)

    图  16  气动阻尼试验结构时域响应(一阶, Ma=1.05)

    Figure  16.  Structural time response in aerodynamic damping test (1st mode, Ma=1.05)

    图  17  运载火箭弹性模型气动阻尼曲线(一阶)

    Figure  17.  Aerodynamic damping ratio of an aeroelastic model of the launch vehicle (1st mode)

    图  18  气动阻尼试验中的一阶自由-自由弯曲频率

    Figure  18.  Frequencies of vibration in the 1st free-free bending mode in aerodynamic damping test

    图  19  0°迎角气动阻尼

    Figure  19.  Aerodynamic damping ratio at α=0°

    图  20  4°迎角气动阻尼

    Figure  20.  Aerodynamic damping ratio at α=4°

    图  21  6°迎角气动阻尼

    Figure  21.  Aerodynamic damping ratio at α=6°

    图  22  8°迎角气动阻尼

    Figure  22.  Aerodynamic damping ratio at α=8°

    图  23  10°迎角气动阻尼

    Figure  23.  Aerodynamic damping ratio at α=10°

    表  1  一阶自由-自由弯曲模态参数

    Table  1.   Structural dynamic properties of the 1st free-free bending mode

    Model Modal frequency/Hz Structural damping ratio
    Basic model 163.4 0.0165
    Model "L" 112.8 0.0125
    下载: 导出CSV
  • [1] 倪嘉敏.我国运载火箭气动设计回顾[C]//近代空气动力学研讨会论文集. 2005.

    NI J M. Review of aerodynamic design of China's launch vehicle[C]//Proceedings of the Modern Aerodynamics Symposium. 2005.
    [2] 崔尔杰.流固耦合力学研究与应用进展[C]//钱学森科学贡献暨学术思想研讨会论文集. 2001.

    CUI E J. Research and application progress of fluid-structure interaction mechanics[C]//Proceedings of Seminar of Qian Xuesen Scientific Contributions and Academic Thoughts. 2001.
    [3] 程镇煌.宇航飞行器跨音速气动弹性问题探讨[J].上海航天, 1997, (6):16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT706.003.htm

    CHENG Z H. Discussion on transonic pneumatic elasticity of spacecraft[J]. Aerospace Shanghai, 1997, (6):16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT706.003.htm
    [4] REDING J P, ERICSSON L E. Effect of aeroelastic considerations on seasat-A payload shroud design[J]. Journal of Spacecraft and Rockets, 1981, 18(3):241-247. doi: 10.2514/3.57810
    [5] COLE H A. Dynamic response of hammerhead launch vehicles to transonic buffeting[R]. NASA TN D-1982, 1963.
    [6] BARTELS R E, WIESEMAN C D, MINECK R E. Computational aeroelastic analysis of the ares launch vehicle during ascent[R]. AIAA 2010-4374, 2010.
    [7] AZEVEDO J L F. Aeroelastic analysis of launch vehicles in transonic flight[J]. Journal of Spacecraft and Rockets, 1989, 26(1):14-23. doi: 10.2514/3.26027
    [8] SINCLAIR A J, FLOWERS G T. Low-order aeroelastic model of launch-vehicle dynamics[R]. AIAA 2010-7725, 2010.
    [9] DOTSON K W. Transient coupling of launch vehicle bending responses with aerodynamic flow state variations[J]. Journal of Spacecraft and Rockets, 2001, 38(1):97-104. doi: 10.2514/2.3660
    [10] COLE S R, HENNING T L. Buffet response of a hammerhead launch vehicle wind-tunnel model[J]. Journal of Spacecraft and Rockets, 1992, 29(3):379-385. doi: 10.2514/3.26362
    [11] 冯明溪, 王志安.火箭跨音速动导数和抖振实验[J].宇航学报, 1987(1):55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB198701007.htm

    FENG M X, WANG Z A. Experiments of transonic derivatives and buffeting of rocket[J]. Journal of Astronautics, 1987(1):55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB198701007.htm
    [12] 冉景洪, 刘子强, 胡静, 等.减阻杆气动阻尼研究[J].力学学报, 2014, 46(4):636-641. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404019.htm

    RAN J H, LIU Z Q, HU J, et al. Research of aero-damping for blunt with spike[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):636-641. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404019.htm
    [13] 白葵, 冯明溪.弹性模型实验技术[J].流体力学实验与测量, 1999, 13(1):38-42. doi: 10.3969/j.issn.1672-9897.1999.01.006

    BAI K, FENG M X. Aeroelastic model and the buffet experimental technique[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1):38-42. doi: 10.3969/j.issn.1672-9897.1999.01.006
    [14] JI C, RAN J H, LI F, et al. The aerodynamic damping test of elastic launch vehicle model in transonic flow[C]//Proc of the 64th International Astronautical Congress. 2013.
    [15] 季辰, 吴彦森, 何岗, 等.运载火箭气动阻尼风洞试验研究[C]//第十二届全国空气弹性学术交流会论文集. 2011.

    JI C, WU Y S, HE G, et al. Experimental study on aerodynamic damping wind tunnel of launch vehicle[C]//Proceedings of the 12th National Aeroelasticity Conference. 2011.
    [16] 季辰, 刘子强, 李锋.钝前缘梯形翼高超声速风洞颤振试验[J].气体物理, 2018, 3(1):54-63. https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201801008.htm

    JI C, LIU Z Q, LI F. Hypersonic wind tunnel flutter test for a blunt-leading-edge delta wing[J]. Physics of Gases, 2018, 3(1):54-63. https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201801008.htm
    [17] 刘子强, 白葵, 毛国良, 等.锤头体弹性振动跨音速气动阻尼系数的确定[J].宇航学报, 2002, 23(6):1-7. doi: 10.3321/j.issn:1000-1328.2002.06.001

    LIU Z Q, BAI K, MAO G L, et al. The determination of aerodynamic damping on hammerhead launch vehicles at transonic speeds[J]. Journal of Astronautics, 2002, 23(6):1-7. doi: 10.3321/j.issn:1000-1328.2002.06.001
    [18] 朱剑, 冉景洪, 吴彦森, 等.捆绑式运载火箭的气动阻尼数值计算方法[C]//第十三届全国空气弹性学术交流会论文集. 2013.

    ZHU J, RAN J H, WU Y S, et al. Numerical calculation method for aerodynamic damping of bundle launch vehicles[C]//Proceedings of the 13rd National Aeroelasticity Conference. 2013.
    [19] JONES G W Jr, FOUGHNER J T Jr. Investigation of buffet pressures on models of large manned launch vehicle configurations[R]. NASA TN D-1633, 1963.
    [20] CF COE. Surface pressure fluctuations associated with aerodynamic noise[R]. NASA SP-207, 1969.
    [21] BISPLINGHOFF R L, ASHLEY H, HALFMAN R L. Aeroelasticity[M]. Cambridge:Addison-Wesley Publishing Company Incorporated, 1955.
    [22] 曹树谦, 张文德, 萧龙翔.振动结构模态分析——理论、实验与应用[M].天津:天津大学出版社, 2014.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  87
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-13
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日