留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动脉内皮血流动力学微环境建模分析和体外模拟方法与技术研究进展

覃开蓉 梁夫友 那景童

覃开蓉, 梁夫友, 那景童. 动脉内皮血流动力学微环境建模分析和体外模拟方法与技术研究进展[J]. 实验流体力学, 2020, 34(2): 11-24. doi: 10.11729/syltlx20200029
引用本文: 覃开蓉, 梁夫友, 那景童. 动脉内皮血流动力学微环境建模分析和体外模拟方法与技术研究进展[J]. 实验流体力学, 2020, 34(2): 11-24. doi: 10.11729/syltlx20200029
QIN Kairong, LIANG Fuyou, NA Jingtong. State of the art of the methods and techniques in modeling analysis and in vitro simulation of arterial endothelial hemodynamic microenvironment[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 11-24. doi: 10.11729/syltlx20200029
Citation: QIN Kairong, LIANG Fuyou, NA Jingtong. State of the art of the methods and techniques in modeling analysis and in vitro simulation of arterial endothelial hemodynamic microenvironment[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 11-24. doi: 10.11729/syltlx20200029

动脉内皮血流动力学微环境建模分析和体外模拟方法与技术研究进展

doi: 10.11729/syltlx20200029
基金项目: 

科技部国家重点研发计划项目 SQ2019YFC200094

国家自然科学基金面上项目 31971243

国家自然科学基金面上项目 11972231

中央高校基本科研业务费项目 DUT19ZD201

详细信息
    作者简介:

    覃开蓉(1969-), 男, 湖南石门人, 教授。研究方向:生物流体力学、微流控芯片、医学信息检测技术。通信地址:辽宁省大连市大连理工大学光电工程与仪器科学学院(116024)。E-mail:krqin@dlut.edu.cn

    通讯作者:

    覃开蓉, E-mail:krqin@dlut.edu.cn

    梁夫友, E-mail: fuyouliang@sjtu.edu.cn

  • 中图分类号: O368;R318.01

State of the art of the methods and techniques in modeling analysis and in vitro simulation of arterial endothelial hemodynamic microenvironment

  • 摘要: 动脉内皮微环境中的血压、壁面剪应力和牵张应力等血流动力学参量在维持内皮的正常生理功能中扮演着至关重要的角色。在体(in vivo)动脉内皮血流动力学微环境的建模分析与体外(in vitro)模拟研究不仅为心脑血管疾病早期诊断与预防、治疗与康复提供重要的生理指标,而且是深入理解心脑血管疾病发生发展机制不可或缺的基础,具有重要的科学意义和临床应用价值。本文综述了在体动脉内皮微环境的血流动力学建模分析、体外评估动脉内皮微环境血流动力学特性的模拟循环系统(Mock Circulatory System,MCS)以及用于细胞力学生物学研究的体外内皮细胞培养模型(Endothelial Cell Culture Model,ECCM)三方面的研究进展。通过对该领域的主要文献进行归纳和系统分析,指出了亟待解决的方法与技术问题,为进一步开展相关研究提供参考。
  • 图  1  动脉内皮微环境中血压、壁面剪应力和周向牵张应力(或应变)作用于血管壁示意图

    Figure  1.  Schematic diagram of blood pressure, wall shear stress, and circumferential tensile stress (or strain) applied on blood vessel's wall in vascular endothelial microenvironment

    图  2  患者个性化主动脉模型的边界条件设置[61]

    Figure  2.  Patient-specific prescription of boundary conditions for an aortic model[61]

    图  3  MCS基本结构示意图(基于文献[73]图 1重绘)

    Figure  3.  Schematic diagram for fundamental structure of the MCS (adapted from Fig. 1 in Ref.[73])

    图  4  考虑局部动脉解剖结构的MCS实物图

    Figure  4.  An actual setup of the MCS with consideration of local arterial anatomic structure

    图  5  平行平板流动腔系统(基于文献[83]图 1重绘)

    Figure  5.  A parallel-plate flow chamber system (adapted from Fig. 1 in Ref.[83])

    图  6  静压力加载装置(基于文献[84]图 1重绘)

    Figure  6.  An apparatus for loading static pressure (adapted from Fig. 1 in Ref.[84])

    图  7  牵张应力(或应变)加载装置(基于文献[86]图 1重绘)

    Figure  7.  An apparatus for loading tensile strain (or stress) (adapted from Fig. 1 in Ref.[86])

    图  8  硅胶管流动腔系统(基于文献[90]图 2重绘)

    Figure  8.  A silicone tube flow chamber system (adapted from Fig. 2 in Ref.[90])

    图  9  基于微流控技术的ECCM(基于文献[92]重绘)

    Figure  9.  A microfluidic-based ECCM (adapted from Ref.[92])

  • [1] PENG Z K, SHU B Y, ZHANG Y R, et al. Endothelial response to pathophysiological stress[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2019, 39(11):e233-e243. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1157015
    [2] JAMES B D, ALLEN J B. Vascular endothelial cell behavior in complex mechanical microenvironments[J]. ACS Biomaterials Science & Engineering, 2018, 4(11):3818-3842. doi: 10.1007/s00018-012-1115-1
    [3] CHIEN S. Mechanotransduction and endothelial cell homeostasis:the wisdom of the cell[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2006, 292(3):H1209-H1224. doi: 10.1152-ajpheart.01047.2006/
    [4] ZHOU J, LI Y S, CHIEN S. Shear stress-initiated signaling and its regulation of endothelial function[J]. Arteriosclerosis, Thrombosis, and Vascular biology, 2014, 34(10):2191-2198. doi: 10.1161/ATVBAHA.114.303422
    [5] HAN Y, HUANG K, YAO Q P, et al. Mechanobiology in vascular remodeling[J]. National Science Review, 2018, 5(6):933-946. doi: 10.1093/nsr/nwx153
    [6] KANG H Y, FAN Y B, DENG X Y. Vascular smooth muscle cell glycocalyx modulates shear-induced proliferation, migration, and NO production responses[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2010, 300(1):H76-H83. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220504592/
    [7] HSIEH H J, LIU C A, HUANG B, et al. Shear-induced endothelial mechanotransduction:the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications[J]. Journal of Biomedical Science, 2014, 21(1):3. doi: 10.1186/1423-0127-21-3
    [8] CHAO Y L, YE P, ZHU L L, et al. Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway[J]. Journal of Cellular Physiology, 2018, 233(2):1384-1395. doi: 10.1002/jcp.26016
    [9] 曲乐丰.颈动脉内膜斑块切除术:手术技巧及围术期处理[M].第一版.北京:人民军医出版社, 2015.

    QU L F. Carotid endarterectomy:surgical skills and perioderative treatment[M]. 1st ed. Beijing:People's Military Medical Press, 2015.
    [10] SCHWARZMAIER-D'ASSIE A, NYOLCZAS N, HEMETSBER-GER R, et al. Comparison of short-and long-term results of drug-eluting vs. bare metal stenting in the porcine internal carotid artery[J]. Journal of Endovascular Therapy, 2011, 18(4):547-558. doi: 10.1583/10-3347.1
    [11] Marcheix B, Eynden F V, Demers P, et al. Influence of diabetes mellitus on long-term survival in systematic off-pump coronary artery bypass surgery[J]. Annals of Thoracic Sur-gery, 2008, 86(4):1181-1188. doi: 10.1016/j.athoracsur.2008.06.063
    [12] NAITO N, NISHIMURA T, LIZUKA K, et al. Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility[J]. Interactive CardioVascular and Thoracic Surgery, 2018, 26(1):119-123. doi: 10.1093/icvts/ivx236
    [13] LIN W, XIONG L, HAN J, et al. Hemodynamic effects of external counterpulsation is a different measure of impaired cerebral autoregulation from vasoreactivity to breath-holding[J]. European Journal of Neurology, 2014, 21(2):326-331. doi: 10.1111/ene.12314
    [14] XIONG L, LIN W H, HAN J H, et al. Enhancing cerebral perfusion with external counterpulsation after ischaemic stroke:how long does it last?[J]. Journal of Neurology, Neurosur-gery, and Psychiatry, 2016, 87(5):531-536. doi: 10.1136/jnnp-2014-309842
    [15] BUSCHMANN E E, HILLMEISTER P, PERSSON A B, et al. Short-term external counterpulsation augments cerebral blood flow and tissue oxygenation in chronic cerebrovascular occlusive disease[J]. European Journal of Neurology, 2018, 25(11):1326-1332. doi: 10.1111/ene.13725
    [16] GOTO C, HIGASHI Y, KIMURA M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans-role of endothelium-dependent nitric oxide and oxidative stress[J]. Circulation, 2003, 108(5):530-535. doi: 10.1161/01.CIR.0000080893.55729.28
    [17] SPENCE A L, CARTER H H, NAYLOR L H, et al. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans[J]. The Journal of Physiology, 2013, 591(5):1265-1275. doi: 10.1113/jphysiol.2012.247387
    [18] GREEN D J. Exercise training as vascular medicine:direct impacts on the vasculature in humans[J]. Exercise and Sport Sciences Reviews, 2009, 37(4):196-202. doi: 10.1097/JES.0b013e3181b7b6e3
    [19] GREEN D J, HOPMAN M T E, PADILLA J, et al. Vascular adaptation to exercise in humans:role of hemodynamic stimuli[J]. Physiological Reviews, 2017, 97(2):495-528. doi: 10.1152/physrev.00014.2016
    [20] HUANG C Y, HOLFELD J, SCHADEN W, et al. Mechanotherapy:revisiting physical therapy and recruiting mechanobiology for a new era in medicine[J]. Trends in Molecular Medicine, 2013, 19(9):555-564. doi: 10.1016/j.molmed.2013.05.005
    [21] 王艳霞, 刘海斌, 刘波, 等.运动对动脉内皮功能的调控及血流剪切力的介导作用[J].北京生物医学工程, 2017, 36(6):639-647. doi: 10.3969/j.issn.1002-3208.2017.06.015

    WANG Y X, LIU H B, LIU B, et al. Regulation of artery endothelial function by exercise training and the role of wall shear stress[J]. Beijing Biomedical Engineering, 2017, 36(6):639-647. doi: 10.3969/j.issn.1002-3208.2017.06.015
    [22] WANG Y X, WANG Y, LI S Q, et al. The analysis of wall shear stress modulated by acute exercise in the human common carotid artery with an elastic tube model[J]. Computer Modeling in Engineering and Sciences, 2018, 116(2):127-147. doi: 10.31614/cmes.2018.03985
    [23] LIU H B, YUAN W X, WANG Q Y, et al. Carotid arterial stiffness and hemodynamic responses to acute cycling intervention at different times during 12-week supervised exercise training period[J]. BioMed Research International, 2018(5):2907548. http://downloads.hindawi.com/journals/bmri/2018/2907548.pdf
    [24] BIGLINO G, COSENTINO D, STEEDEN J A, et al. Using 4D cardiovascular magnetic resonance imaging to validate computational fluid dynamics:a case study[J]. Frontier in Pediatrics, 2015, 3:107. https://www.ncbi.nlm.nih.gov/pubmed/26697416
    [25] ONG C W, XIONG F, KABINEJADIAN F, et al. Hemodynamic analysis of a novel stent graft design with slit perforations in thoracic aortic aneurysm[J]. Journal of Biomechanics, 2019, 85:210-217. doi: 10.1016/j.jbiomech.2019.01.019
    [26] VAN ROSENDAEL A R, SHAW L J, XIE J X, et al. Superior risk stratification with coronary computed tomography angiography using a comprehensive atherosclerotic risk score[J]. JACC:Cardiovascular Imaging, 2019, 12(10):1987-1997. doi: 10.1016/j.jcmg.2018.10.024
    [27] MET R, BIPAT S, LEGEMATE D A, et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease:a systematic review and meta-analysis[J]. Journal of the American Medical Association, 2009, 301(4):415-424. doi: 10.1001/jama.301.4.415
    [28] MOTOYAMA S, ITO H, SARAI M, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up[J]. Journal of the American College of Cardiology, 2015, 66(4):337-346. doi: 10.1016/j.jacc.2015.05.069
    [29] CHOI E K, CHOI S I, RIVERA J J, et al. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals[J]. Journal of the American College of Cardiology, 2008, 52(5):357-365. doi: 10.1016/j.jacc.2008.02.086
    [30] KIM W Y, DANIAS P G, STUBER M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses[J]. The New England Journal of Medicine, 2001, 345(26):1863-1869. doi: 10.1056/NEJMoa010866
    [31] HAGSPIEL K D, NORTON P T. Computed Tomography Angiography (CTA)[M]//Kramer C M. Imaging in peripheral arterial disease.: Springer Nature Switzerland AG, 2020: 45-61.
    [32] CAVALLO A U, KOKTZOGLOU I, EDELMAN R R, et al. Noncontrast magnetic resonance angiography for the diagnosis of peripheral vascular disease[J]. Circulation:Cardiovascular Imaging, 2019, 12(5):e008844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f8514485f0cae20a36d9a6dece1ba70
    [33] CHO S J, JUNG S C, SUH C H, et al. High-resolution magnetic resonance imaging of intracranial vessel walls:Comparison of 3D T1-weighted turbo spin echo with or without DANTE or iMSDE[J]. PloS One, 2019, 14(8):0220603.
    [34] VRANIC J E, HUYNH T J, FATA P, et al. The ability of magnetic resonance black blood vessel wall imaging to evaluate blunt cerebrovascular injury following acute trauma[J]. Journal of Neuroradiology, 2019(in press). doi: 10.1016/J.NEURAD.2019.01.091.
    [35] TENG Z Z, SADAT U, BROWN A J, et al. Plaque hemorrhage in carotid artery disease:pathogenesis, clinical and biomechanical considerations[J]. Journal of Biomechanics, 2014, 47(4):847-858. doi: 10.1016/j.jbiomech.2014.01.013
    [36] VASBINDER G B C, NELEMANS P J, KESSELS A G H, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis[J]. Annals of Internal Medicine, 2004, 141(9):674-682. doi: 10.7326/0003-4819-141-9-200411020-00007
    [37] VAN ROOIJ W J, SPRENGERS M E, DE GAST A N, et al. 3D rotational angiography:the new gold standard in the detection of additional intracranial aneurysms[J]. American Journal of Neuroradiology, 2008, 29(5):976-979. doi: 10.3174/ajnr.A0964
    [38] LANG S, HOELTER P, BIRKHOLD A I, et al. Quantitative and qualitative comparison of 4D-DSA with 3D-DSA using computational fluid dynamics simulations in cerebral aneurysms[J]. American Journal of Neuroradiology, 2019, 40(9):1505-1510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4183f348b9175eff0bbb908d3a39bd9e
    [39] LANG S, HOELTER P, SCHMIDT M, et al. Evaluation of an artificial intelligence-based 3D-angiography for visualization of cerebral vasculature[J]. Clinical Neuroradiology, 2019. doi: 10.1007/s00062-019-00836-7.
    [40] LANDRY A, SPENCE J D, FENSTER A. Measurement of carotid plaque volume by 3-dimensional ultrasound[J]. Stroke, 2004, 35(4):864-869. doi: 10.1161/01.STR.0000121161.61324.ab
    [41] TURK M, PRETNAR-OBLAK J, ZUPAN M, et al. Ultrasound diagnosis of carotid artery stiffness in patients with ischemic leukoaraiosis[J]. Ultrasound in Medicine and Biology, 2015, 41(1):64-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21cec0365b08a8cfa7860c5ac919825a
    [42] BOTS M L, WESTERINK J, RABELINK T J, et al. Assessment of flow-mediated vasodilatation (FMD) of the brachial artery:effects of technical aspects of the FMD measurement on the FMD response[J]. European Heart Journal, 2005, 26(4):363-368. doi: 10.1093/eurheartj/ehi017
    [43] SCHINKEL A F L, BOSCH J G, STAUB D, et al. Contrast-enhanced ultrasound to assess carotid intraplaque neovasculari-zation[J]. Ultrasound in Medicine and Biology, 2020, 46(3):466-478. doi: 10.1016/j.ultrasmedbio.2019.10.020
    [44] CHENG J M, GARCIA-GARCIA H M, DE BOER S P M, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome:results of the ATHEROREMO-IVUS study[J]. European Heart Journal, 2014, 35(10):639-647. doi: 10.1093/eurheartj/eht484
    [45] MYNARD J P, STEINMAN D A, Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity[J]. Ultrasound in Medicine and Biology, 2013, 39(5):870-881. doi: 10.1016/j.ultrasmedbio.2012.11.006
    [46] KHAN M A, LIU J, TARUMI T, et al. Measurement of cerebral blood flow using phase contrast magnetic resonance imaging and duplex ultrasonography[J]. Journal of Cerebral Blood Flow and Metabolism, 2017, 37(2):541-549. doi: 10.1177/0271678X16631149
    [47] MORBIDUCCI U, PONZINI R, RIZZO G, et al.In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging[J]. Annals of Biomedical Engineering, 2009, 37(3):516-531. doi: 10.1007/s10439-008-9609-6
    [48] MARKL M, FRYDRYCHOWICZ A, KOZERKE S, et al. 4D flow MRI[J]. Journal of Magnetic Resonance Imaging, 2012, 36(5):1015-1036. doi: 10.1002/jmri.23632
    [49] GATEHOUSE P D, KEEGAN J, CROWE L A, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI[J]. European Radiology, 2005, 15(10):2172-2184. doi: 10.1007/s00330-005-2829-3
    [50] BARKER A J, LANNING C, SHANDAS R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI[J]. Annals of Biomedical Engineering, 2010, 38(3):788-800. doi: 10.1007/s10439-009-9854-3
    [51] XU L J, LIANG F Y, GU L X, et al. Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery[J]. Journal of Biomechanics, 2018, 72:187-199. doi: 10.1016/j.jbiomech.2018.03.014
    [52] STEINMAN D A. Image-based computational fluid dynamics modeling in realistic arterial geometries[J]. Annals of Biomedical Engineering, 2002, 30(4):483-497. doi: 10.1114/1.1467679
    [53] TAYLOR C A, STEINMAN D A. Image-based modeling of blood flow and vessel wall dynamics:applications, methods and future directions[J]. Annals of Biomedical Engineering, 2010, 38(3):1188-1203. doi: 10.1007/s10439-010-9901-0
    [54] XU L J, ZHAO B, LIU X S, et al. Computational methods applied to analyze the hemodynamic effects of flow-diverter devices in the treatment of cerebral aneurysms:Current status and future directions[J]. Medicine in Novel Technology and Devices, 2019, 3:100018. doi: 10.1016/j.medntd.2019.100018
    [55] VASSILEVSKI Y V, DANILOV A, SIMAKOV S, et al. Patient-specific anatomical models in human physiology[J]. Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, 30(3):185-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/rnam-2015-0017
    [56] SEN Y K, QIAN Y, AVOLIO A, et al. Image segmentation methods for intracranial aneurysm haemodynamic research[J]. Journal of Biomechanics, 2014, 47(5):1014-1019. doi: 10.1016/j.jbiomech.2013.12.035
    [57] MOYLE K R, ANTIGA L, STEINMAN D A. Inlet conditions for image-based CFD models of the carotid bifurcation:Is it reasonable to assume fully developed flow?[J]. Journal of Biomechanical Engineering-Transactions of the ASME, 2006, 128(3):371-379. doi: 10.1115/1.2187035
    [58] LIANG F Y, LIU X S, YAMAGUCHI R, et al. Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network[J]. Journal of Biomechanics, 2016, 49(15):3731-3740. doi: 10.1016/j.jbiomech.2016.09.031
    [59] JANSEN I G H, SCHNEIDERS J J, POTTERS W V, et al. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics[J]. American Journal of Neuroradiology, 2014, 35(8):1543-1548. doi: 10.3174/ajnr.A3901
    [60] CHENG Z, JULI C, WOOD N B, et al. Predicting flow in aortic dissection:comparison of computational model with PC-MRI velocity measurements[J]. Medical Engineering & Physics, 2014, 36(9):1176-1184. https://www.ncbi.nlm.nih.gov/pubmed/25070022
    [61] XU L J, YIN L K, LIU Y J, et al. A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta[J]. Mathematical Biosciences and Engineering, 2019, 17(1):606-626. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728110/
    [62] LIANG F, OSHIMA M, HUANG H, et al. Numerical study of cerebroarterial hemodynamic changes following carotid artery operation:a comparison between multiscale modeling and stand-alone three-dimensional modeling[J]. Journal of Biomechanical Engineering, 2015, 137(10):101011. doi: 10.1115/1.4031457
    [63] ZHOU X D, YIN L K, XU L J, et al. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation:an in vivo measurement-based computational study[J]. Journal of Biomechanics, 2020, 101:109617. doi: 10.1016/j.jbiomech.2020.109617
    [64] DAWSON E A, GREEN D J, CABLE N T, et al. Effects of acute exercise on flow-mediated dilation (FMD) in healthy humans[J]. Journal of Applied Physiology, 2013, 115(11):1589-1598. doi: 10.1152/japplphysiol.00450.2013
    [65] HSIAO S T, SPENCER T, BOLDOCK L, et al. Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase[J]. Cardiovascular Research, 2016, 112(3):689-701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d11db2424147228a65a72ff1dddf9375
    [66] GEHRON J, ZIRBES J, BONGERT M, et al. Development and validation of a life-sized mock circulatory loop of the human circulation for fluid-mechanical studies[J]. ASAIO Journal, 2019, 65(8):788-797. doi: 10.1097/MAT.0000000000000880
    [67] D'SOUZA G A, TAYLOR M D, BANERJEE R K. Methodology for hemodynamic assessment of a three-dimensional printed patient-specific vascular test device[J]. Journal of Medical Devices-Transactions of the ASME, 2019, 13(3):031011. doi: 10.1115/1.4043992
    [68] LI M T, WALK R, ROKA-MOIIA Y, et al. Circulatory loop design and components introduce artifacts impacting in vitro evaluation of ventricular assist device thrombogenicity:a call for caution[J]. Artificial organs, 2019. doi: 10.1111/aor.13626.
    [69] 刘赵淼, 南斯琦, 史艺.中等严重程度冠状动脉病变模型的血流动力学参数分析[J].力学学报, 2015, 47(6):1058-1064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201506018

    LIU Z M, NAN S Q, SHI Y. Hemodynamic parameter analysis for coronary artery stenosis of intermediate severity model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1058-1064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201506018
    [70] 刘赵淼, 杨刚, 逄燕, 等.不同心排出量下主动脉瓣血流动力学的PIV实验研究[J].力学学报, 2019, 51(6):1918-1925. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201906028

    LIU Z M, YANG G, PANG Y, et al. Experimental study on hemodynamics of aortic valve under varied cardiac output using PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6):1918-1925. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201906028
    [71] LIU Z M, ZHAO S W, LI Y J, et al. Influence of coronary bifurcation angle on atherosclerosis[J]. Acta Mechanica Sinica, 2019, 35(6):1269-1278. doi: 10.1007/s10409-019-00878-7
    [72] LIU Z M, YANG G, NAN S Q, et al. The effect of anastomotic angle and diameter ratio on flow field in the distal end-to-side anastomosis[J]. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2019. doi: 10.1177/0954411919894410.
    [73] 黄鹏辉, 黄柊喻, 党维国, 等.用于心室辅助装置血流动力学性能评价的体外循环系统技术进展[J].医用生物力学, 2018, 33(4):365-371.

    HUANG P H, HUANG Z Y, DANG W G, et al. A review on mock circulatory systems for in vitro hemodynamics performance evaluation of ventricular assist devices[J]. Journal of Medical Biomechanics, 2018, 33(4):365-371.
    [74] 柳兆荣, 李惜惜.血液动力学原理和方法[M].上海:复旦大学出版社, 1997.
    [75] KRUEGER J W, YOUNG D F, CHOLVIN N R. An in vitro study of flow response by cells[J]. Journal of Biomechanics, 1971, 4(1):31-36. http://www.sciencedirect.com/science/article/pii/0021929071900133
    [76] MEIKLE M C, REYNOLDS J J, SELLERS A, et al. Rabbit cranial sutures in vitro:a new experimental model for studying the response of fibrous joints to mechanical stress[J]. Calcified Tissue International, 1979, 28(2):137-144. doi: 10.1007%2FBF02441232
    [77] DAVIS C A, ZAMBRANO S, ANUMOLU P, et al. Device-based in vitro techniques for mechanical stimulation of vascular cells:a review[J]. Journal of Biomechanical Engineering-Transactions of the ASME, 2015, 137(4):040801. doi: 10.1115/1.4029016
    [78] MAVI M F, JI J Y. Endothelial wound recovery is influenced by treatment with shear stress, wound direction, and substrate[J]. Cellular and Molecular Bioengineering, 2013, 6(3):310-325. doi: 10.1007/s12195-013-0277-8
    [79] HUANG X L, SHEN Y, ZHANG Y, et al. Rac1 mediates laminar shear stress-induced vascular endothelial cell migration[J]. Cell Adhesion & Migration, 2013, 7(6):462-468. doi: 10.4161/cam.27171
    [80] MUN G I, PARK S, KREMERSKOTHEN J, et al. Expression of synaptopodin in endothelial cells exposed to laminar shear stress and its role in endothelial wound healing[J]. FEBS Letters, 2014, 588(6):1024-1030. doi: 10.1016/j.febslet.2014.02.012
    [81] ZHANG J, FRIEDMAN M H. Adaptive response of vascular endothelial cells to an acute increase in shear magnitude[J]. American Journal of Physiology-Heart and Circulatory Physio-logy, 2012, 302(4):H983-H991. doi: 10.1152/ajpheart.00168.2011
    [82] ZHANG J, FRIEDMAN M H. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2013, 305(6):H894-H902. doi: 10.1152/ajpheart.00174.2013
    [83] WANG Y X, LIU H B, LI P S, et al. ROS and NO dynamics in endothelial cells exposed to exercise-induced wall shear stress[J]. Cellular and Molecular Bioengineering, 2019, 12(1):107-120. doi: 10.1007/s12195-018-00557-w
    [84] YOSHINO D, SATO K, SATO M. Endothelial cell response under hydrostatic pressure condition mimicking pressure therapy[J]. Cellular and Molecular Bioengineering, 2015, 8(2):298-303. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234700455/
    [85] RUSSO T A, STOLL D, NADER H B, et al. Mechanical stretch implications for vascular endothelial cells:altered extracellular matrix synthesis and remodeling in pathological conditions[J]. Life Sciences, 2018, 213(15):214-225. https://www.sciencedirect.com/science/article/abs/pii/S0024320518306556
    [86] LEE C H, SHIN H J, CHO I H, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast[J]. Biomaterials, 2005, 26(11):1261-1270. doi: 10.1016/j.biomaterials.2004.04.037
    [87] ZHAO S M, SUCIU A, ZIEGLER T, et al. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15(10):1781-1786. doi: 10.1161/01.ATV.15.10.1781
    [88] PENG X Q, RECCHIA FA, BYRNE B J, et al. In vitro system to study realistic pulsatile flow and stretch signaling in cultured vascular cells[J]. American Journal of Physiology-Cell Physiology, 2000, 279(3):C797-C805. doi: 10.1152/ajpcell.2000.279.3.C797
    [89] QIU Y C, TARBELL J M. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production[J]. Journal of Vascular Research, 2000, 37(3):147-157. doi: 10.1159/000025726
    [90] DANCU M B, TARBELL J M. Large negative stress phase angle (SPA) attenuates Nitric Oxide production in bovine aortic endothelial cells[J]. Journal of Biomechanical Engineering-Transactions of the ASME, 2006, 128(3):329-334. doi: 10.1115/1.1824120
    [91] GIRIDHARAN G A, NGUYEN M D, ESTRADA R, et al. Microfluidic cardiac cell culture model (μCCCM)[J]. Analytical Chemistry, 2010, 82(18):7581-7587. doi: 10.1021/ac1012893
    [92] ESTRADA R, GIRIDHARAN G A, NGUYEN M D, et al. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro[J]. Analytical Chemistry, 2011, 83(8):3170-3177. doi: 10.1021/ac2002998
    [93] LIU Z R, JIANG W Y, HUO Y, et al. The analysis of the steady flow in the flow chamber[J]. Journal of Hydrodynamics:Series B, 1997(2):37-45. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2289785
    [94] 徐刚, 覃开蓉, 柳兆荣.平行平板流动腔脉动流切应力的计算[J].力学季刊, 2000, 21(1):45-51. doi: 10.3969/j.issn.0254-0053.2000.01.010

    XU Gang, QIN K R, LIU Z R. Calculation of the shear stress in the parallel-plate flow chamber under pulsatile flow condition[J]. Chinese Quarterly of Mechanics, 2000, 21(1):45-51. doi: 10.3969/j.issn.0254-0053.2000.01.010
    [95] ANDREWS A M, JARON D, BUERK D G, et al. Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro[J]. Nitric Oxide, 2010, 23(4):335-342. doi: 10.1016/j.niox.2010.08.003
    [96] CHEN Y F, CHAN H N, MICHAEL S A, et al. A microfluidic circulatory system integrated with capillary-assisted pressure sensors[J]. Lab on a Chip, 2017, 17(4):653-662. doi: 10.1039/C6LC01427E
    [97] SEI Y J, AHN S I, VIRTUE T, et al. Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor[J]. Scientific Reports, 2017, 7(1):10019. doi: 10.1038/s41598-017-10636-z
    [98] SATO K, SATO K. Recent progress in the development of microfluidic vascular models[J]. Analytical Sciences, 2018, 34(7):755-764. doi: 10.2116/analsci.17R006
    [99] SEBASTIAN B, DITTRICH P S. Microfluidics to mimic blood flow in health and disease[J]. Annual Review of Fluid Mechanics, 2018, 50(1):483-504. doi: 10.1146/annurev-fluid-010816-060246
    [100] ZHENG C H, YU Z L, ZHOU Y, et al. Live cell imaging analysis of the epigenetic regulation of the human endothelial cell migration at single-cell resolution[J]. Lab on a Chip, 2012, 12(17):3063-3072. doi: 10.1039/c2lc40192d
    [101] PRIM D A, POTTS J D, EBERTH J F. Pulsatile perfusion bioreactor for biomimetic vascular impedances[J]. Journal of Biomechanical Engineering-Transactions of the ASME, 2018, 12(4):041002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f55ad1df2dd7f2b3e558070f7d4ffe0
    [102] CHEN Z Z, GAO Z M, ZENG D P, et al. A Y-shaped microfluidic device to study the combined effect of wall shear stress and ATP signals on intracellular calcium dynamics in vascular endothelial cells[J]. Micromachines, 2016, 7(11), 213. doi: 10.3390/mi7110213
    [103] CHEN Z Z, YUAN W M, XIANG C, et al. A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells[J]. Biomechanics and Modeling in Mechano-biology, 2019, 18(1):189-202. doi: 10.1007/s10237-018-1076-x
    [104] ZHANG Z Q, XU L J, LIU R, et al. Importance of incorporating systemic cerebroarterial hemodynamics into computational modeling of blood flow in intracranial aneurysm[J]. Journal of Hydrodynamics, 2019. doi: 10.1007/s42241-019-0038-9.
    [105] QIN K R, JIANG Z L, SUN H, et al. A multiscale model for analyzing the synergy of CS and WSS on the endothelium in straight arteries[J]. Acta Mechanica Sinica, 2006, 22(1):76-83. doi: 10.1007/s10409-005-0082-2
    [106] ZHU Y, LI Y Z, QIN K R, et al. Transportation of dynamic biochemical signals in non-reversing oscillatory flows in blood vessels[J]. Science China-Physics Mechanics & Astronomy, 2013, 56(2):322-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-eg201302011
    [107] LI X Y, LIU X S, LI X, et al. Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis[J]. Biomechanics and Modeling in Mechano-biology, 2019, 18(4):883-896. doi: 10.1007/s10237-019-01118-4
    [108] WANG Y X, XIANG C, LIU B, et al. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells[J]. Biomedical Engineering Online, 2016, 15(Suppl 2):154. doi: 10.1186/s12938-016-0273-z
    [109] LIU B, QU M J, QIN K R, et al. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro[J]. Biophysical Journal, 2008, 94(4):1497-1507. doi: 10.1529/biophysj.106.098574
    [110] QIN K R, HU X Q, LIU Z R. Analysis of pulsatile flow in the parallel-plate flow chamber with spatial shear stress gradient[J]. Journal of Hydrodynamics:Series B, 2007, 19(1):113-120. doi: 10.1016/S1001-6058(07)60036-5
    [111] QIN K R, XIANG C, GE S Z. Generation of dynamic biochemical signals with a tube mixer:effect of dispersion in an oscillatory flow[J]. Heat and Mass Transfer, 2010, 46(6):675-686. doi: 10.1007/s00231-010-0602-x
    [112] LI Y J, LI Y Z, CAO T, et al. Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel:effect of transverse diffusion and longitudinal dispersion[J]. Journal of Biomechanical Engineering-Transactions of the ASME, 2013, 135(12):121011. doi: 10.1115/1.4025774
    [113] LI Y J, CAO T, QIN K R. Transmission of dynamic biochemical signals in the shallow microfluidic channel:nonlinear modulation of the pulsatile flow[J]. Microfluidics and Nanofluidics, 2018, 22(8):1-13. https://www.researchgate.net/publication/326540266_Transmission_of_dynamic_biochemical_signals_in_the_shallow_microfluidic_channel_nonlinear_modulation_of_the_pulsatile_flow
    [114] QIN K R, XIANG C, XU Z, et al. Dynamic modeling for shear stress induced ATP release from vascular endothelial cells[J]. Biomechanics and Modeling in Mechanobiology, 2008, 7(5):345-353. doi: 10.1007/s10237-007-0088-8
    [115] QIN K R, XIANG C, CAO L L. Dynamic modeling for flow-activated Chloride-selective membrane current in vascular endothelial cells[J]. Biomechanics and Modeling in Mechano-biology, 2011, 10(5):743-754. doi: 10.1007/s10237-010-0270-2
    [116] LI L F, XIANG C, QIN K R. Modeling of TRPV4-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP[J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(5):979-993. doi: 10.1007/s10237-015-0647-3
    [117] XIANG C, CAO L L, QIN K R, et al. Dynamic modeling and control of extracellular ATP concentration on vascular endothelial cells via shear stress modulation[J]. Journal of Control Theory and Applications, 2010, 8(3):326-332. doi: 10.1007/s11768-010-0030-y
    [118] NA J T, XUE C D, LI Y J, et al. Precise generation of dynamic biochemical signals by controlling the programmable pump in a Y-shaped microfluidic chip with a 'christmas tree' inlet[J]. Electrophoresis, 2020. doi: 10.1002/elps.201900400.
  • 加载中
图(9)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  151
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-01
  • 修回日期:  2020-03-17
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日