留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水旋转圆盘气膜层减阻的实验研究

陈正云 张清福 潘翀 刘彦鹏 蔡楚江

陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52-59. doi: 10.11729/syltlx20200025
引用本文: 陈正云, 张清福, 潘翀, 等. 超疏水旋转圆盘气膜层减阻的实验研究[J]. 实验流体力学, 2021, 35(3): 52-59. doi: 10.11729/syltlx20200025
CHEN Zhengyun, ZHANG Qingfu, PAN Chong, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52-59. doi: 10.11729/syltlx20200025
Citation: CHEN Zhengyun, ZHANG Qingfu, PAN Chong, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52-59. doi: 10.11729/syltlx20200025

超疏水旋转圆盘气膜层减阻的实验研究

doi: 10.11729/syltlx20200025
基金项目: 

国家自然科学基金 11972062

国家自然科学基金 11721202

国家自然科学基金 91952301

详细信息
    作者简介:

    陈正云(1983-), 女, 上海人, 硕士。研究方向: 流体力学, 船舶结构、舾装设计。通信地址: 上海市浦东新区洲海路3001号综合楼8楼(200137)。E-mail: czy3215@163.com

    通讯作者:

    刘彦鹏, E-mail: liuyanpeng1980@163.com

  • 中图分类号: O351.2

An experimental study on drag reduction of superhydrophobic rotating disk with air plastron

  • 摘要: 在冯卡门旋流中,对均匀超疏水表面与网纹超疏水表面在雷诺数Re~O(105)量级上的减阻性能与表面气膜状态进行了实验观测。2种超疏水表面均使用物理喷涂法在有机玻璃板上喷涂纳米疏水颗粒制备。网纹超疏水表面制备时增加了丝网掩模的步骤,因此其表面增加了毫米级网格纹理。实验结果表明:对于冯卡门旋流中的超疏水表面减阻而言,存在一个临界雷诺数Rec,当Re < Rec时,超疏水表面具有稳定的减阻效果,减阻率高达30%;当Re>Rec时,减阻效果随Re的增加快速丧失。相较均匀超疏水表面,网纹超疏水表面可以有效提高其表面附着的气膜层的动态稳定性。此外,可通过主动补气的方式有效恢复网纹超疏水表面气膜层,进而恢复减阻效果,这将为超疏水表面实现可持续的减阻提供新的技术方案。
  • 图  1  实验装置

    Figure  1.  Experimental facility diagram

    图  2  实验用各种平板及光学轮廓图

    Figure  2.  Superhydrophobic preparation diagram and optical profiles of different disks for experiment

    图  3  动盘表面气膜状况

    Figure  3.  Air plastron condition on rotating disk surface

    图  4  不同实验表面的稳态摩擦扭矩和平均摩阻系数随雷诺数和最大切速度的变化

    Figure  4.  Variations of steady-state friction torque and average friction coefficient of different experimental surfaces with Reynolds number and maximum shear speeds

    图  5  超疏水圆盘减阻失效过程与不同Re下的减阻有效时间

    Figure  5.  Superhydrophobic disk drag reduction failure process and effective time of drag reduction under different Re

    图  6  循环主动脉冲通气实验的扭矩时序信号与补气前后气膜状态

    Figure  6.  Torque time sequence signal and air plastron state before and after supplementation in cyclic active pulse ventilation experiment

  • [1] BULLEE P A, VERSCHOOF R A, BAKHUIS D, et al. Bubbly drag reduction using a hydrophobic inner cylinder in Taylor-Couette turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A61. doi: 10.1017/jfm.2019.894
    [2] HU H B, WEN J, BAO L Y, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288. doi: 10.1126/sciadv.1603288
    [3] 莫梦婷, 赵文杰, 陈子飞, 等. 海洋减阻技术的研究现状[J]. 摩擦学学报, 2015, 35(4): 505-515. doi: 10.16078/j.tribology.2015.04.020

    MO M T, ZHAO W J, CHEN Z F, et al. Research status of marine drag reduction technologies[J]. Tribology, 2015, 35(4): 505-515. doi: 10.16078/j.tribology.2015.04.020
    [4] 李山, 杨绍琼, 姜楠. 沟槽面湍流边界层减阻的TRPIV测量[J]. 力学学报, 2013, 45(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201302007.htm

    LI S, YANG S Q, JIANG N. Trpiv measurement of drag-reduction in the turbulent boundary layer over riblets plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201302007.htm
    [5] 王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092

    WANG X, LI S, TANG Z Q, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
    [6] 黄桥高, 潘光, 胡海豹, 等. 脊状表面航行器模型减阻特性的水洞实验研究[J]. 实验流体力学, 2010, 24(3): 50-53. doi: 10.11729/syltlx20180035

    HUANG Q G, PAN G, HU H B, et al. Investigation about drag reduction characteristic of iblets surface on vehicle model in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 50-53. doi: 10.11729/syltlx20180035
    [7] BURNISHEV Y, STEINBERG V. Influence of polymer additives on turbulence in von Karman swirling flow between two disks. II[J]. Physics of Fluids, 2016, 28(3): 033101. doi: 10.1063/1.4942401
    [8] 朱波, 赵文斌, 李明义, 等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学, 2018, 32(5): 61-66. http://www.syltlx.com/CN/abstract/abstract11145.shtml

    ZHU B, ZHAO W B, LI M Y, et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61-66. doi: 1672-9897(2010)03-0050-04
    [9] 胡海豹, 宋保维, 黄桥高, 等. 水下湍流减阻途径分析[J]. 摩擦学学报, 2010, 30(6): 620-629. doi: 10.16078/j.tribology.2010.06.007

    HU H B, SONG B W, HUANG Q G, et al. Analysis about the approaches of underwater turbulence drag reduction[J]. Tribology, 2010, 30(6): 620-629. doi: 10.16078/j.tribology.2010.06.007
    [10] LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 1-20. doi: 10.1007/s00348-016-2264-z
    [11] ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 89-109. doi: 10.1146/annurev-fluid-121108-145558
    [12] 王新亮, 狄勤丰, 张任良, 等. 超疏水表面滑移理论及其减阻应用研究进展[J]. 力学进展, 2010, 40(3): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201003002.htm

    WANG X L, DI Q F, ZHANG R L, et al. Progress in theories of super-hydrophobic surface slip effect and its application to drag reduction technology[J]. Advances in Mechanics, 2010, 40(3): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201003002.htm
    [13] 刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
    [14] POETES R, HOLTZMANN K, FRANZE K, et al. Metastable underwater superhydrophobicity[J]. Physical Review Letters, 2010, 105(16): 166104. doi: 10.1103/PhysRevLett.105.166104
    [15] FORSBERG P, NIKOLAJEFF F, KARLSSON M. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure[J]. Soft Matter, 2011, 7(1): 104-109. doi: 10.1039/c0sm00595a
    [16] SAMAHA M A, VAHEDI TAFRESHI H, GAD-EL-HAK M. Sustainability of superhydrophobicity under pressure[J]. Physics of Fluids, 2012, 24(11): 112103. doi: 10.1063/1.4766200
    [17] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46(0): 179-225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201600004.htm

    LV P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(0): 179-225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201600004.htm
    [18] TRUESDELL R, MAMMOLI A, VOROBIEFF P, et al. Drag reduction on a patterned superhydrophobic surface[J]. Physical Review Letters, 2006, 97(4): 044504. doi: 10.1103/physrevlett.97.044504
    [19] 胡海豹, 王德政, 鲍路瑶, 等. 基于润湿阶跃的水下大尺度气膜封存方法[J]. 物理学报, 2016, 65(13): 201-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613023.htm

    HU H B, WANG D Z, BAO L Y, et al. Maintaining large-scale gas layer by creating wettability difference on surfaces under water[J]. Acta Physica Sinica, 2016, 65(13): 201-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613023.htm
    [20] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究[J]. 物理学报, 2014, 63(7): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201407029.htm

    WANG B, WANG J D, CHEN D R. Drag reduction on hydrophobic transverse grooved surface by underwater gas formed naturally[J]. Acta Physica Sinica, 2014, 63(7): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201407029.htm
    [21] 郝鹏飞, 汪幸愉, 姚朝晖, 等. 疏水微槽道内层流减阻的实验研究[J]. 实验流体力学, 2009, 23(3): 7-11, 15. http://www.syltlx.com/CN/abstract/abstract9763.shtml

    HAO P F, WANG X Y, YAO Z H, et al. Experimental study on laminar drag reduction in hydrophobic microchannels[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 7-11, 15. doi: 1672-9897(2009)03-0007-06
    [22] CAI C J, SANG N N, TENG S C, et al. Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water[J]. Surface and Coatings Technology, 2016, 307: 366-373. doi: 10.1016/j.surfcoat.2016.09.009
    [23] DU P, WEN J, ZHANG Z Z, et al. Maintenance of air layer and drag reduction on superhydrophobic surface[J]. Ocean Engineering, 2017, 130: 328-335. doi: 10.1016/j.oceaneng.2016.11.028
    [24] LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502. doi: 10.1103/physrevlett.106.014502
    [25] LEE J, YONG K. Combining the lotus leaf effect with artificial photosynthesis: regeneration of underwater super hydrophobicity of hierarchical ZnO/Si surfaces by solar water splitting[J]. NPG Asia Materials, 2015, 7(7): e201. doi: 10.1038/am.2015.74
    [26] 冯家兴, 胡海豹, 卢丙举, 等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001003.htm

    FENG J X, HU H B, LU B J, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001003.htm
    [27] 张梦卓, 胡海豹, 杜鹏, 等. 超疏水表面水下电解补气方法研究[J]. 实验流体力学, 2020, 34(1): 67-71. doi: 10.11729/syltlx20190097

    ZHANG M Z, HU H B, DU P, et al. Research on gas replenishment for submersed superhydrophobic surface by electrolysis[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 67-71. doi: 10.11729/syltlx20190097
    [28] BRADY J F, DURLOFSKY L. On rotating disk flow[J]. Journal of Fluid Mechanics, 1987, 175: 363. doi: 10.1017/s0022112087000430
    [29] BURNISHEV Y, STEINBERG V. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(2): 023001. doi: 10.1103/physreve.92.023001
    [30] MOAVEN K, RAD M, TAEIBI-RAHNI M. Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows[J]. Experimental Thermal and Fluid Science, 2013, 51: 239-243. doi: 10.1016/j.expthermflusci.2013.08.003
    [31] MUKHERJEE A, LUKASCHUK S, BURNISHEV Y, et al. Precise measurements of torque in von Karman swirling flow driven by a bladed disk[J]. Journal of Turbulence, 2018, 19(8): 647-663. doi: 10.1080/14685248.2018.1494833
    [32] MUKHERJEE A, STEINBERG V. Von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment[J]. Physical Review Fluids, 2018, 3: 014102. doi: 10.1103/physrevfluids.3.014102
    [33] CHOI W, BYEON H, PARK J Y, et al. Effects of pressure gradient on stability and drag reduction of superhydrophobic surfaces[J]. Applied Physics Letters, 2019, 114(10): 101603. doi: 10.1063/1.5085081
  • 加载中
图(6)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  267
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-04-07
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日