留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂流体中Janus微马达自扩散泳特性的实验研究

李娜娜 郑旭 李战华

李娜娜, 郑旭, 李战华. 复杂流体中Janus微马达自扩散泳特性的实验研究[J]. 实验流体力学, 2020, 34(2): 99-106. doi: 10.11729/syltlx20200023
引用本文: 李娜娜, 郑旭, 李战华. 复杂流体中Janus微马达自扩散泳特性的实验研究[J]. 实验流体力学, 2020, 34(2): 99-106. doi: 10.11729/syltlx20200023
LI Nana, ZHENG Xu, Zhanhua SILBER-LI. Experimental study on the self-diffusiophoresis of the Janus micromotor in complex fluids[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 99-106. doi: 10.11729/syltlx20200023
Citation: LI Nana, ZHENG Xu, Zhanhua SILBER-LI. Experimental study on the self-diffusiophoresis of the Janus micromotor in complex fluids[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 99-106. doi: 10.11729/syltlx20200023

复杂流体中Janus微马达自扩散泳特性的实验研究

doi: 10.11729/syltlx20200023
基金项目: 

国家自然科学基金 11572335

国家自然科学基金 11672358

详细信息
    作者简介:

    李娜娜(1995-), 女, 山东菏泽人, 硕士研究生。研究方向:微纳米流体力学, 微纳尺度流动。通信地址:北京市海淀区北四环西路15号中国科学院力学所非线性力学国家重点实验室(100190)。E-mail:linana@imech.ac.cn

    通讯作者:

    郑旭, E-mail: zhengxu@lnm.imech.ac.cn

  • 中图分类号: O35

Experimental study on the self-diffusiophoresis of the Janus micromotor in complex fluids

  • 摘要: Janus微纳马达在生物医学中作为药物输运的载体或在复杂工况中作为微纳机器人的动力部件具有广阔的应用前景。已有研究主要集中于Janus微纳马达在水溶液等简单流体中的运动,而对其在复杂流体中的运动机理及特性的研究仍非常缺乏。通过实验测量了直径2.06 μm的Janus球形微马达在高聚物聚氧化乙烯(PEO)溶液中的自扩散泳特性,实验结果系统描述了高聚物质量分数对Janus微马达自扩散泳速度、运动均方位移(MSD)及转动特性的影响。实验结果显示:高聚物的加入,不仅会影响溶液黏度,还会导致自驱动MSD在短时间段显示亚扩散特性,在推进段显示随高聚物质量分数改变的超扩散特性,甚至还会导致反常的微马达旋转加快现象。
  • 图  1  简单流体中Janus微马达无量纲均方位移随无量纲时间的变化[13]

    Figure  1.  Dimensionless MSD of Janus micromotors in simple liquid varies with dimensionless time[13]

    图  2  Janus微马达制作过程

    Figure  2.  Fabrication process of Janus micromotors

    图  3  图像处理与Janus微马达追踪示意图

    Figure  3.  Schematic diagram of images processing and particles tracking of Janus micromotor

    图  4  Janus微马达转动测量示意图

    Figure  4.  Schematic diagram of rotation measurement of Janus micromotors

    图  5  10%的H2O2溶液中不同PEO质量分数时的Janus微马达均方位移

    Figure  5.  The MSD results of Janus micromotors in 10% H2O2 solutions with different PEO mass fractions

    图  6  不同质量分数H2O2溶液中Janus微马达的无量纲均方位移随无量纲时间的变化

    Figure  6.  Dimensionless MSD of Janus micromotors in H2O2 solutions with different mass fractions varies with dimensionless time

    图  7  Janus微马达转角随时间的变化

    Figure  7.  Rotational angle of Janus micromotors varies with time

    图  8  t=0.1 s时Janus微马达的转角概率分布

    Figure  8.  Rotational angle probability distribution of Janus micromotors at t=0.1 s

    图  9  高聚物溶液中Janus微马达的均方转角随时间的变化

    Figure  9.  The mean square rotational angle of Janus micromotors in polymer solutions varies with time

    表  1  不同质量分数溶液中的Janus微马达自扩散泳特征速度

    Table  1.   Characteristic propulsion speed of Janus micromotors in different solutions

    0%0.1%0.5%1.0%
    10%3.462.502.081.66
    15%4.432.802.151.89
    注:表中速度单位为μm/s
    下载: 导出CSV
  • [1] ISMAGILOV R F, SCHWARTZ A, BOWDEN N, et al. Autonomous movement and self-assembly[J]. Angewandte Chemie-International Edition, 2002, 41(4):652-654. doi: 10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U
    [2] PAXTON W F, KISTLER K C, OLMEDA C C, et al. Catalytic nanomotors:Autonomous movement of striped nanorods[J]. Journal of the American Chemical Society, 2004, 126:13424-13431. doi: 10.1021/ja047697z
    [3] DUAN W T, WANG W, DAS S, et al. Synthetic nano-and micromachines in analytical chemistry:Sensing, migration, capture, delivery and separation[J]. Annual Review of Analytical Chemistry, 2015, 8:311-333. doi: 10.1146/annurev-anchem-071114-040125
    [4] WANG W, DUAN W T, AHMED S, et al. Small power:Autonomous nano-and micromotors propelled by self-generated gradients[J]. Nano Today, 2013, 8(5):531-554. doi: 10.1016/j.nantod.2013.08.009
    [5] SINGH V V, SOTO F, KAUFMANN K, et al. Micromotor-based energy generation[J]. Angewandte Chemie-International Edition, 2015, 54(23):6896-6899. doi: 10.1002/anie.201501971
    [6] BECHINGER C, DI LEONARDO R, LÖWEN H, et al. Active particles in complex and crowded environments[J]. Review of Modern Physics, 2016, 88(4):045006. doi: 10.1103/RevModPhys.88.045006
    [7] MORAN J L, POSNER J D. Phoretic self-propulsion[J]. Annual Review of Fluid Mechanics, 2017, 49(1):511-540. doi: 10.1146/annurev-fluid-122414-034456
    [8] DE GENNES P G. Soft matter (Nobel lecture)[J]. Angewandte Chemie-International Edition, 1992, 31(7):842-845. doi: 10.1002/anie.199208421
    [9] MICHELIN S, LAUGA E. Phoretic self-propulsion at finite Péclet numbers[J]. Journal of Fluid Mechanics, 2014, 747:572-604. doi: 10.1017/jfm.2014.158
    [10] DE BUYL P, KAPRAL R. Phoretic self-propulsion:a mesoscopic description of reaction dynamics that powers motion[J]. Nanoscale, 2013, 5:1337-1344. doi: 10.1039/c2nr33711h
    [11] Golestanian R, Liverpool T B, Ajdari A. Designing phoretic micro-and nano-swimmers[J]. New J Phys, 2007, 9:126. doi: 10.1088/1367-2630/9/5/126
    [12] ANDERSON J L. Colloid transport by interfacial forces[J]. Annual Review of Fluid Mechanics, 1989, 21(1):61-99. doi: 10.1146/annurev.fl.21.010189.000425
    [13] ZHENG X, TEN HAGEN B, Kaiser A, et al. Non-Gaussian statistics for the motion of self-propelled Janus particles:Experiment versus theory[J]. Physical Review E, 2013, 88(3):032304. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1308.5389
    [14] NOURHANI A, CRESPI V H, LAMMERT P E, et al. Self-electrophoresis of spheroidal electrocatalytic swimmers[J]. Physics of Fluids, 2015, 27(9):092002. doi: 10.1063/1.4929518
    [15] JIANG H R, YOSHINAGA N, SANO M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam[J]. Physical Review Letters, 2010, 105(26):268302. doi: 10.1103/PhysRevLett.105.268302
    [16] HU C Z, PANé S, Nelson B J, et al. Soft micro-and nanorobotics[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1:53-75. doi: 10.1146/annurev-control-060117-104947
    [17] MEDINA-SÁNCHEZ M, MAGDANZ V, GUIX M, et al. Swimming microrobots:soft, reconfigurable, and smart[J]. Advanced Functional Materials, 2018, 28(25):1707228. doi: 10.1002/adfm.201707228
    [18] LI J X, DE ÁVILA B E F, GAO W, et al. Micro/nanorobots for biomedicine:Delivery, surgery, sensing, and detoxification[J]. Science Robotics, 2017, 2(4):eaam6431. doi: 10.1126/scirobotics.aam6431
    [19] WANG S N, LIU X J, WANG Y, et al. Biocompatibility of artificial micro/nanomotors for use in biomedicine[J]. Nanoscale, 2019, 11(30):14099-14112. doi: 10.1039/C9NR03393A
    [20] PARMAR J, VILELA D, VILLA K, et al. Micro-and nanomotors as active environmental microcleaners and sensors[J]. Journal of the American Chemical Society, 2018, 140(30):9317-9331. doi: 10.1021/jacs.8b05762
    [21] KAGAN D, CARVO-MARZAL P, BALASUBRAMANIAN S, et al. Chemical sensing based on catalytic nanomotors:motion-based detection of trace silver[J]. Journal of the American Chemical Society, 2009, 131(34):12082-12083. doi: 10.1021/ja905142q
    [22] JURADO-SÁNCHEZ B, SATTAYASAMITSATHIT S, GAO W, et al. Self-propelled activated carbon Janus micromotors for efficient water purification[J]. Small, 2015, 11(4):499-506. doi: 10.1002/smll.201402215
    [23] SRIVASTAVA S K, GUIX M, SCHMIDT O G. Wastewater mediated activation of micromotors for efficient water cleaning[J]. Nano Letters, 2016, 16(1):817-821. doi: 10.1021/acs.nanolett.5b05032
    [24] MALLORY S A, VALERIANI C, CACCIUTO A. An active approach to colloidal self-assembly[J]. Annual Review of Physical Chemistry, 2018, 69(1):59-79. doi: 10.1146/annurev-physchem-050317-021237
    [25] BRICARD A, CAUSSIN J B, DESREUMAUX N, et al. Emergence of macroscopic directed motion in populations of motile colloids[J]. Nature, 2013, 503(7474):95-98. doi: 10.1038/nature12673
    [26] HOWSE J R, JONES R A, RYAN A J, et al. Self-motile colloidal particles:from directed propulsion to random walk[J]. Physical Review Letters, 2007, 99(4):048102. doi: 10.1103/PhysRevLett.99.048102
    [27] EBBENS S J, HOWSE J R. Direct observation of the direction of motion for spherical catalytic swimmers[J]. Langmuir, 2011, 27(20):12293-12296. doi: 10.1021/la2033127
    [28] ZHANG J, ZHENG X, CUI H H, et al. The self-propulsion of the spherical Pt-SiO2 Janus micro-motor[J]. Micromachines, 2017, 8(4):123. doi: 10.3390/mi8040123
    [29] 张静, 郑旭, 王雷磊, 等.气泡推进型中空Janus微球运动特性的实验研究[J].实验流体力学, 2017, 31(2):61-66. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11012.shtml

    ZHANG J, ZHENG X, WANG L L, et al. Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):61-66. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11012.shtml
    [30] MORAN J L, POSNER J D. Phoretic self-propulsion[J]. Annual Review of Fluid Mechanics, 2017, 49:511-540. doi: 10.1146/annurev-fluid-122414-034456
    [31] GOMEZ-SOLANO J R, BLOKHUIS A, BECHINGER C. Dynamics of self-propelled Janus particles in viscoelastic fluids[J]. Physical Review Letters, 2016, 116(13):138301. doi: 10.1103/PhysRevLett.116.138301
    [32] KARANI H, PRADILLO G, VLAHOVSKA P M. Tuning the random walk of active colloids:from individual run-and-tumble to dynamic clustering[J]. Physical Review Letters, 2019, 123(20):208002. doi: 10.1103/PhysRevLett.123.208002
    [33] REIGH S, HUANG M, LOWEN H, et al. Active rotational dynamics of a self-diffusiophoretic colloidal motor[J]. Soft Matter, 2020, 16(5):1236-1245. doi: 10.1039/C9SM01977D
    [34] XUE C D, ZHENG X, CHEN K K, et al. Probing non-Gaussianity in confined diffusion of nanoparticles[J]. Journal of Physical Chemistry Letters, 2016, 7(3):514-519. doi: 10.1021/acs.jpclett.5b02624
    [35] WONG I Y, GARDEL M L, REICHMAN D R, et al. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks[J]. Physical Review Letters, 2004, 92(17):178101. doi: 10.1103/PhysRevLett.92.178101
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  73
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-01
  • 修回日期:  2020-04-08
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日