留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速风洞气动力/热试验数据天地相关性研究进展

罗长童 胡宗民 刘云峰 姜宗林

罗长童, 胡宗民, 刘云峰, 等. 高超声速风洞气动力/热试验数据天地相关性研究进展[J]. 实验流体力学, 2020, 34(3): 78-89. doi: 10.11729/syltlx20200006
引用本文: 罗长童, 胡宗民, 刘云峰, 等. 高超声速风洞气动力/热试验数据天地相关性研究进展[J]. 实验流体力学, 2020, 34(3): 78-89. doi: 10.11729/syltlx20200006
LUO Changtong, HU Zongmin, LIU Yunfeng, et al. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. doi: 10.11729/syltlx20200006
Citation: LUO Changtong, HU Zongmin, LIU Yunfeng, et al. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. doi: 10.11729/syltlx20200006

高超声速风洞气动力/热试验数据天地相关性研究进展

doi: 10.11729/syltlx20200006
基金项目: 

国家自然科学基金 11532014

详细信息
    作者简介:

    罗长童(1974-), 男, 河南固始人, 博士, 副研究员。研究方向:全局优化算法、智能计算方法、计算流体力学及其在高温气体动力学中的应用。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所。E-mail:luo@imech.ac.cn

    通讯作者:

    胡宗民,E-mail: huzm@imech.ac.cn

  • 中图分类号: O355

Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels

  • 摘要: 高温真实气体效应、黏性干扰效应和尺度效应等高超声速流动特性突破了实验气体动力学传统的流动相似模拟准则,使得高超声速流动现象超出了经典气体动力学理论能够准确预测的范围。如何利用地面风洞试验数据预测天上的飞行状态,即天地相关性问题,成为制约新型高超声速飞行器研制与发展的关键性科学问题。本文概述了天地相关性的最新研究进展,并重点介绍了多空间相关理论与泛函智能优化关联方法。多空间相关理论认为,从更高维度空间视角看,不同风洞的试验结果都是内在相关的,而飞行试验可视为理想的风洞试验,所以地面风洞试验数据间的关联规律包含了天地相关性问题。泛函智能优化关联方法基于风洞群(能模拟不同参数区段的不同类型风洞)的试验数据,在泛函空间中利用专业化智能学习算法,从高维度的全参数空间出发,进行降维和自适应空间变换,自动推演出不同风洞共同遵守的不变规律,从而实现风洞试验数据的关联。验证实例和应用实践都表明,多空间相关理论与泛函智能优化关联方法是有效的,是高超声速气动力/热天地相关性研究的一个新方向。
  • 图  1  天地相关性示意图

    Figure  1.  Diagram of ground-to-flight correlation

    图  2  从个别规律到不变规律

    Figure  2.  From individual rules to invariant laws

    图  3  PME算法的空间关系

    Figure  3.  Spatial relationship of PME algorithm

    图  4  BBP算法设计与工作流程

    Figure  4.  Algorithm design and workflow of BBP

    图  5  不同风洞数据的一致性关联

    Figure  5.  Consistent correlation of different wind tunnels data

    图  6  泛函空间中关联变换的分布

    Figure  6.  Distribution of correlation transformations in functional space

    图  7  已有方法的关联结果

    Figure  7.  Correlation results of existing methods

  • [1] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston, VA:AIAA, 2006.
    [2] 陈坚强, 张益荣, 张毅锋, 等.高超声速气动力数据天地相关性研究综述[J].空气动力学学报, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005

    CHEN J Q, ZHANG Y R, ZHANG Y F, et al. Review of correlation analysis of aerodynamic data between flight and ground prediction for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005
    [3] BERTIN J J, CUMMINGS R M. Critical hypersonic aerother-modynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157. doi: 10.1146/annurev.fluid.38.050304.092041
    [4] SALTZMAN E J, GARRIGER D E. Summary of full-scale lift and drag characteristics of the X-15 airplane[R]. NASA TN D-3343, 1966.
    [5] VLASOV V I, GORSHKOV A B, KOVALEV R V, et al. Thin triangular blunt-nosed plate in a viscous hypersonic flow[J]. Fluid Dynamics, 2009, 44(4):596-605. doi: 10.1134/S0015462809040139
    [6] ELSENAAR A. On Reynolds number effects and simulation[R]. AGARD CP-429, 1988.
    [7] HAINES A B. Prediction of scale effects at transonic speeds:current practice and a gaze into the future[J]. Aeronautical Journal, 2000, 104(1039), 421-431.
    [8] HOWE J T. Hypervelocity atmospheric flight: real gas flow fields[R]. NASA RP-1249, 1989.
    [9] 龚安龙, 解静, 刘晓文, 等.近空间高超声速气动力数据天地换算研究[J].工程力学, 2017, 34(10):229-238. doi: 10.6052/j.issn.1000-4750.2016.05.0404

    GONG A L, XIE J, LIU X W, et al. Study on ground-to-flight extrapolation of near space hypersonic aerodynamic data[J]. Engineering Mechanics, 2017, 34(10):229-238. doi: 10.6052/j.issn.1000-4750.2016.05.0404
    [10] NICOLÌ A, IMPERATORE B, MARINI M, et al. Ground-to-flight extrapolation of the aerodynamic coefficients of the VEGA launcher[R]. AIAA-2006-3829, 2006.
    [11] PETERSON J B, MANN M J, SORRELLS R B, et al. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701). II: Extrapolation of wind-tunnel data to full-scale conditions[R]. NASA TP-1515, 1980.
    [12] RUFOLO G, RONCIONI P, MARINI M, et al. Post flight aerodynamic analysis of the experimental vehicle PRORA USV 1[R]. AIAA-2008-2661, 2008.
    [13] MORELLI E A, DELOACH R. Wind tunnel database development using modern experiment design and multivariate orthogonal functions[R]. AIAA-2003-0653, 2003.
    [14] DOUGLAS D P, CAROLYN M. Statistical methods for rapid aerothermal analysis and design technology: Validation[R]. NASA NAG1-02030, 2003.
    [15] 汪清, 钱炜祺, 何开锋.导弹气动参数辨识与优化输入设计[J].宇航学报, 2008, 29(3):789-793. doi: 10.3873/j.issn.1000-1328.2008.03.010

    WANG Q, QIAN W Q, HE K F. Aerodynamic parameter identification and optimal input design for missile[J]. Journal of Astronautics, 2008, 29(3):789-793. doi: 10.3873/j.issn.1000-1328.2008.03.010
    [16] LEE J H, KIM E T, CHANG B H, et al. The accuracy of the flight derivative estimates derived from flight data[J]. International Journal of Aerospace and Mechanical Engineering, 2009, 3(10):1317-1323. https://www.researchgate.net/publication/289654115_The_accuracy_of_the_flight_derivative_estimates_derived_from_flight_data
    [17] NORGAARD M, JORGENSEN C, ROSS J. Neural network prediction of new aircraft design coefficients[R]. NASA Technical Memorandum 112197, 1997.
    [18] RAJKUMAR T, BARDINA J. Prediction of aerodynamic coefficients using neural networks for sparse data[C]//Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference.2002.
    [19] MALMATHANRAJ R, TYSON T F. Characteristic prediction of wind tunnel tests using learning from examples[J]. International Journal of Computer Applications, 2011, 35(6):5-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ea70ceb140c7edde7473ed13527228ad
    [20] RAVIKIRAN N, UBAIDULLA P. Support vector machine approach to drag coefficient estimation[C]//Proc of the 7th International Conference on Signal Processing. 2004.
    [21] 姜宗林, 罗长童, 刘云峰, 高超声速风洞试验数据多空间相关理论与关联方法研究[C]//第四届高超声速科技学术会议论文集, 2011.

    JIANG Z L, LUO C T, LIU Y F. Research on multi-space correlation theory and correlation method of hypersonic wind tunnel experimental data[C]//Proc of the 4th National Conference on Hypersonic Science and Technology. 2011.
    [22] 姜宗林, 罗长童, 胡宗民, 等.高超声速风洞试验数据的多维空间相关理论与关联方法[J].中国科学(物理学力学天文学), 2015, 45(12):40-51. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm

    JIANG Z L, LUO C T, HU Z M, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12):124705. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm
    [23] BRUNTON S L, PROCTOR J L, KUTZ J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. PNAS, 2016, 113(15):3932-3937. doi: 10.1073/pnas.1517384113
    [24] GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network[J]. Physical Review Fluids, 2017, 2(5):054604. doi: 10.1103/PhysRevFluids.2.054604
    [25] MALIK K, ZBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen[J]. Nuclear Engineering and Technology, 2019, 51(2):424-431. doi: 10.1016/j.net.2018.11.004
    [26] CHANDRASEKARAN N, OOMMEN C, KUMAR V R S, et al. Prediction of detonation velocity and N-O composition of high energy C-H-N-O explosives by means of artificial neural networks[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5):579-587. doi: 10.1002/prep.201800325
    [27] FRANKE L L C, CHATZOPOULOS A K, RIGOPOULOS S. Tabulation of combustion chemistry via Artificial Neural Networks (ANNs):Methodology and application to LES-PDF simulation of Sydney flame L[J]. Combustion and Flame, 2017, 185:245-260. doi: 10.1016/j.combustflame.2017.07.014
    [28] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31:015105. doi: 10.1063/1.5061693
    [29] XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31:085112. doi: 10.1063/1.5110788
    [30] LUO C T, ZHANG S L. Parse-matrix evolution for symbolic regression[J]. Engineering Applications of Artificial Intelligence, 2012, 25(6):1182-1193. doi: 10.1016/j.engappai.2012.05.015
    [31] KOZA J R. Genetic programming:On the programming of computers by means of natural selection[M]. 5th ed. Cambridge, MA:MIT Press, 1992.
    [32] O'NEILL M, RYAN C. Grammatical evolution[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(4):349-358. http://d.old.wanfangdata.com.cn/Periodical/ywxk200705038
    [33] LUO C T, YU B. Low dimensional simplex evolution:a new heuristic for global optimization[J]. Journal of Global Optimization, 2012, 52(1):45-55. doi: 10.1007/s10898-011-9678-1
    [34] CHEN C, LUO C T, JIANG Z L. Block building programming for symbolic regression[J]. Neurocomputing, 2018, 275:1973-1980. doi: 10.1016/j.neucom.2017.10.047
    [35] CHEN C, LUO C T, JIANG Z L. A multilevel block building algorithm for fast modeling generalized separable systems[J]. Expert Systems with Applications, 2018, 109:25-34. doi: 10.1016/j.eswa.2018.05.021
    [36] TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12):653-664. doi: 10.2514/8.11476
    [37] CHENG H K. Hypersonic shock-layer theory of the stagnation region at low Reynolds number[C]//Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute. 1961.
    [38] MACROSSAN M N. Scaling parameters for hypersonic flow: correlation of sphere drag data[C]//Proc of the 25th International Symposium on Rarefied Gas Dynamics. 2006.
    [39] LUO C T, HU Z M, ZHANG S L, et al. Adaptive space transformation:an invariant based method for predicting aerodynamic coefficients of hypersonic vehicles[J]. Engineering Applications of Artificial Intelligence, 2015, 46:93-103. doi: 10.1016/j.engappai.2015.09.001
    [40] FIELD J V. Kepler's cosmological theories-their agreement with observation[J]. Quarterly Journal of the Royal Astronomical Society, 1982, (23):556-568. https://ui.adsabs.harvard.edu/abs/1982QJRAS..23..556F/abstract
    [41] Kepler's laws of planetary motion. https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion.
    [42] 李素循.典型外形高超声速流动特性[M].北京:国防工业出版社, 2008.

    LI S X. Hypersonic flow characteristics around typical configuration[M]. Beijing:National Defense Industry Press, 2008.
    [43] WANG Q, LI J P, ZHAO W, et al. Comparative study on aerodynamic heating under perfect and nonequilibrium hypersonic flows[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(2):624701. http://d.old.wanfangdata.com.cn/Conference/9438991
    [44] OERTEL H. Prandtl-essentials of fluid mechanics[M]. New York:Springer New York, 2010.
  • 加载中
图(7)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  128
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-02-20
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日