留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机燃烧室光学可视模型试验件及其流场测量研究进展

王于蓝 范雄杰 高伟 刘存喜 杨金虎 刘富强 穆勇 徐纲

王于蓝, 范雄杰, 高伟, 等. 航空发动机燃烧室光学可视模型试验件及其流场测量研究进展[J]. 实验流体力学, 2021, 35(1): 18-33. doi: 10.11729/syltlx20190171
引用本文: 王于蓝, 范雄杰, 高伟, 等. 航空发动机燃烧室光学可视模型试验件及其流场测量研究进展[J]. 实验流体力学, 2021, 35(1): 18-33. doi: 10.11729/syltlx20190171
WANG Yulan, FAN Xiongjie, GAO Wei, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18-33. doi: 10.11729/syltlx20190171
Citation: WANG Yulan, FAN Xiongjie, GAO Wei, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18-33. doi: 10.11729/syltlx20190171

航空发动机燃烧室光学可视模型试验件及其流场测量研究进展

doi: 10.11729/syltlx20190171
基金项目: 

国家重大科研仪器研制项目 61827802

国家科技重大专项 2017-Ⅲ-0007-0032

详细信息
    作者简介:

    王于蓝(1993-), 女, 山西晋城人, 博士研究生。研究方向: 航空发动机燃烧基础研究。通信地址: 北京市海淀区北四环西路11号(100190), E-mail: wangyulan@iet.cn

    通讯作者:

    刘存喜, E-mail: liucunxi@iet.cn

    徐纲, E-mail: xugang@iet.cn

  • 中图分类号: V433.9

Development of optically accessible gas turbine model combustor and its flow field testing

  • 摘要: 航空发动机燃烧室内的燃烧组织是高温高压受限空间内多级旋流复杂流场结构的气动、燃油雾化、蒸发、油气混合和燃烧化学反应多场耦合过程,而其流场特性影响雾化和燃烧过程,从而对燃烧室的燃烧性能具有决定性影响。对燃烧室内复杂强旋流流场组织机理的认识和高精度测试一直是发动机燃烧室研制过程中的难点之一。本文针对光学可视模型燃烧室试验件设计方法及典型发动机燃烧室的流场组织机理和特性进行总结,希望给发动机燃烧室研制过程中光学模型燃烧室试验件的设计提供一定的借鉴,深刻认识目前两类典型的传统旋流杯模型燃烧室和基于分区分级耦合燃烧技术的新型燃烧室的流场特性,促进航空发动机燃烧室的研制。
  • 图  1  光学可视模型燃烧室试验件发展趋势

    Figure  1.  The development of optically accessible model combustor

    图  2  辛辛那提大学旋流杯模型燃烧室试验件[9-15]

    Figure  2.  Swirl cupmodel combustor rig in University of Cincinnati [9-15]

    图  3  旋流杯模型燃烧室高温高压试验件(DLR,2 MPa,850 K)[16]

    Figure  3.  The high temperature and high pressure facility of swirl cup combustor (DLR, 2 MPa, 850K) [16]

    图  4  考虑火焰筒冷却结构的旋流杯模型燃烧室[18]

    Figure  4.  Swirl cup model combustor having flame tube with primary holes, dilution holes and cooling air holes[18]

    图  5  密歇根大学TAPS燃烧室模型[19]

    Figure  5.  TAPS model combustor of University of Michigan[19]

    图  6  德国宇航局(DLR)燃烧室模型[22]

    Figure  6.  Model combustor of DLR[22]

    图  7  BOSS光学可视模型燃烧室(DLR)[23]

    Figure  7.  Big optical single sector model combustor (DLR)[23]

    图  8  日本JAXA高压试验装置[24]

    Figure  8.  High pressure combustor facility of Japan Aerospace Exploration Agency[24]

    图  9  南航LPP燃烧室试验方案[30-32]

    Figure  9.  Lean premixed prevaporized combustor facility of Nanjing University of Aeronautics and Astronautics[30-32]

    图  10  TeLESS光学可视模型燃烧室[33]

    Figure  10.  Optically accessible model combustor of TeLESS[33]

    图  11  高温高压光学可视模型燃烧室试验件[34]

    Figure  11.  High temperature and high pressure model combustor with optical access[34]

    图  12  三级轴向旋流模型燃烧室[35]

    Figure  12.  Three-staged axial swirler model combustor[35]

    图  13  限制域对流场的影响[9]

    Figure  13.  Confinement effects on flow field[9]

    图  14  流场模式转换临界点时的两种流场结构[9]

    Figure  14.  Flow fields with two metastable modes[9]

    图  15  旋流杯模型燃烧室头部之间耦合相互作用对流场结构的影响(轴向速度)[38]

    Figure  15.  The effect of sector-to-sector interactions on flow field of swirl cup combustor (axial velocity)[38]

    图  16  旋流杯五头部模型燃烧室试验件[39]

    Figure  16.  Linear-arranged 5-swirler array of swirl cup combustor[39]

    图  17  旋流杯模型燃烧室头部间距对流场结构的影响[39]

    Figure  17.  Effect of inter-swirler spacing on flow field of swirl cup combustor[39]

    图  18  中心回流区空间布局示意图[39]

    Figure  18.  Periodic flow patterns of center recirculation zone[39]

    图  19  旋流杯模型燃烧室内流动模式分析[39]

    Figure  19.  Flow pattern sketches in swirl cup combustor[39]

    图  20  某分级分区低排放燃烧室三头部试验件内回流区(Plane 1:中心头部,Plane 5:侧边头部)[41]

    Figure  20.  Recirculation zone in the three-sector rig of a internal staged low emission combustor (Plane 1: center dome, Plane 5: side dome)[41]

    图  21  旋流杯燃烧室典型流场结构

    Figure  21.  The typical flow field structure of swirl cup combustor

    图  22  旋流杯燃烧室冷/热态流场对比[11]

    Figure  22.  Comparison between non-reacting and reacting flow fields in swirl cup combustor[11]

    图  23  旋流杯燃烧室真实火焰筒结构的流场特征[12]

    Figure  23.  The flow field in swirl cup combustor with real liner[12]

    图  24  中心分级燃烧室典型流场结构[45]

    Figure  24.  The typical flow field of internal staged combustor[45]

    图  25  TAPS燃烧室冷态、热态流场[19]

    Figure  25.  Non-reacting and reacting flow fields in TAPS combustor[19]

    图  26  TAPS燃烧室冷/热态工况下的湍流强度和雷诺应力[19]

    Figure  26.  Turbulence intensity and shear strain rate in TAPS combustor under non-reacting and reacting conditions[19]

    图  27  RR公司Lean-burn燃烧室内流场[48]

    Figure  27.  Flow field in Lean-burn combustor of Rolls-Royce company[48]

    图  28  Lean-Staged燃烧室流场[29]

    Figure  28.  Flow field of Lean-Staged combustor[29]

    图  29  预燃级内级旋流器有旋/无旋对流场及燃油分布的影响[49]

    Figure  29.  Effect of inner swirler angle on flow field and spray pattern[49]

    图  30  主燃级旋流角度对流场的影响[50]

    Figure  30.  Effect of main swirler angle on flow field[50]

  • [1] 金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.

    JIN R S, SUO J Q. Advanced gas turbine combustor[M]. Beijing: Aviation industry press, 2016.
    [2] 林宇震, 林阳, 张弛, 等. 先进燃烧室分级燃烧空气流量分配的探讨[J]. 航空动力学报, 2010, 25(9): 1923-1930. doi: 10.13224/j.cnki.jasp.2010.09.007

    LIN Y Z, LIN Y, ZHANG C, et al. Discussion on combustion airflow distribution of advanced staged combustor[J]. Journal of Aerospace Power, 2010, 25(9): 1923-1930. doi: 10.13224/j.cnki.jasp.2010.09.007
    [3] 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.

    LIN Y Z, XU Q H, LIU G E. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
    [4] LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton, FL: CRC Press, 2010.
    [5] 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350. doi: 10.7527/S1000-6893.2013.0358

    ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350. doi: 10.7527/S1000-6893.2013.0358
    [6] ALDÉN M, BOOD J, LI Z S, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97. doi: 10.1016/j.proci.2010.09.004
    [7] BOUDIER G, GICQUEL L Y M, POINSOT T, et al. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3075-3082. doi: 10.1016/j.proci.2006.07.067
    [8] MONGIA H C, AL-ROUB M, DANIS A, et al. Swirl cup modeling part Ⅰ[R]. AIAA 2001-3576, 2001.
    [9] FU Y Q, CAI J, JENG S M, et al. Confinement effects on the swirling flow of a counter-rotating swirl cup[C]//Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA. 2008: 469-478. doi: 10.1115/GT2005-68622
    [10] KAO Y H, DENTON M, WANG X H, et al. Experimental spray structure and combustion of a linearly-arranged 5-swirler array[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-42509
    [11] FU Y Q, CAI J, JENG S M, et al. Reacting spray structure of a counter-rotating swirl cup[C]//Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, 2008. doi: 10.1115/GT2005-68490
    [12] MOHAMMAD B S, CAI J, JENG S M. Gas turbine single annular combustor sector aerodynamics[R]. AIAA 2010-579, 2010.
    [13] HASSA C, VOIGT P, LEHMANN B, et al. Flow field mixing characteristics of an aero-engine combustor-part Ⅰ: experimental results[R]. AIAA 2002-3709, 2002. doi: 10.2514/6.2002-3709
    [14] MOHAMMAD B, JENG S M, ANDAC M G. Influence of the primary jets and fuel injection on the aerodynamics of a prototype annular gas turbine combustor sector[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, 2010. doi: 10.1115/GT2010-23083
    [15] KWONG W Y P, STEINBERG A M. Effect of inter-nozzle spacing on lean blowoff performance of a linear multi-nozzle combustor[R]. AIAA 2019-2244, 2019. doi: 10.2514/6.2019-2244
    [16] WILLERT C, JARIUS M. Planar flow field measurements in atmospheric and pressurized combustion Chambers[J]. Experiments in Fluids, 2002, 33(6): 931-939. doi: 10.1007/s00348-002-0515-7
    [17] COCHET A, BODOC V, BROSSARD C, et al. ONERA test facilities for combustion in aero gas turbine engines, and associated optical diagnostics[J]. AerospaceLab, 2016(11): 16 doi: 10.12762/2016.AL11-01
    [18] XIAO Y L, WANG Z P, LAI Z X, et al. Flow field and species concentration measurements in the primary zone of an aero-engine combustion chamber[J]. Advances in Mechanical Engineering, 2018, 10(1): 1-11. doi: 10.1177/1687814017748052
    [19] SULABH KUMAR D. An experimental study of the stable and unstable operation of an llp gas turbine combustor[D]. Ann Arbor, MI: The University of Michigan, 2008.
    [20] DHANUKA S K, TEMME J E, DRISCOLL J F. Lean-limit combustion instabilities of a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2961-2966. doi: 10.1016/j.proci.2010.07.011
    [21] CARL M, FRODERMANN M, BEHRENDT T, et al. Experimental investigations of an axially staged combustor sector with optical diagnostics at realistic operating conditions[C]//Proceedings of the RTO AVT Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels. 1998.
    [22] ZARZALIS N, RIPPLINGER T, HOHMANN S, et al. Low-NOx combustor development pursued within the scope of the Engine 3E German national research program in a cooperative effort among engine manufacturer MTU, University of Karlsruhe and DLR German Aerospace Research Center[J]. Aerospace Science and Technology, 2002, 6(7): 531-544. doi: 10.1016/S1270-9638(02)01179-3
    [23] FREITAG S, BEHRENDT T, HEINZE J, et al. Study of an airblast atomizer spray in a lean burn aero-engine model combustor at engine conditions[C]//Proceedings of the 24th European Conference on Liquid Atomization and Spray Systems. 2011.
    [24] MATSUURA K, KUROSAWA Y, YAMADA H. Develop-ment of high-pressure spray test facility for evaluation of aero-engine fuel injector performance[R]. JAXA RM06-010, 2007.
    [25] MATSUURA K, SUAUKI K, KUROSAWA Y. Effects of ambient pressure on spray characteristics of a high-shear-type aero-engine airblast fuel injector[C]//Proceedings of the 22nd European Conference on Liquid Atomization and Spray Systems (ILASS). 2008.
    [26] MAKIDA M, YAMADA H, SHIMODAIRA K, et al. Verification of low NOx performance of simple primary rich combustion approach by a newly established full annular combustor test facility[C]//Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2008-51419
    [27] YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Research and development of staging fuel nozzle for aeroengine[C]//Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2009-59852
    [28] KOBAYASHI M, OGATA H, ODA T, et al. Improvement on ignition performance for a lean staged low NOx combustor[C]//Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2012. doi: 10.1115/GT2011-46187
    [29] MATSUYAMA R, KOBAYASHI M, OGATA H, et al. Development of a lean staged combustor for small aero-engines[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2012-68272
    [30] 颜应文, 徐榕, 邓远灏, 等. 贫油预混预蒸发低污染燃烧室头部流场研究[J]. 航空学报, 2012, 33(6): 965-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206002.htm

    YAN Y W, XU R, DENG Y H, et al. Flow field study for head of lean premixed prevaporized low-emission combustor[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 965-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206002.htm
    [31] 邓远灏, 颜应文, 党龙飞, 等. 贫油预混预蒸发低污染燃烧室流场特性试验[J]. 航空动力学报, 2015, 30(10): 2416-2424. doi: 10.13224/j.cnki.jasp.2015.10.016

    DENG Y H, YAN Y W, DANG L F, et al. Experiment of flow field characteristics in a lean premixed prevaporized low emission combustor[J]. Journal of Aerospace Power, 2015, 30(10): 2416-2424. doi: 10.13224/j.cnki.jasp.2015.10.016
    [32] 颜应文, 党龙飞, 邓远灏, 等. LPP低污染燃烧室单头部燃烧性能试验[J]. 航空动力学报, 2015, 30(4): 814-822. doi: 10.13224/j.cnki.jasp.2015.04.007

    YAN Y W, DANG L F, DENG Y H, et al. Experiment of combustion performance in LPP low emission combustor with single dome[J]. Journal of Aerospace Power, 2015, 30(4): 814-822. doi: 10.13224/j.cnki.jasp.2015.04.007
    [33] WANG B, ZHANG C, LIN Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(1): 011501. doi: 10.1115/1.4034154
    [34] LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. doi: 10.1115/1.4037451
    [35] 陈柳君, 乐嘉陵, 张俊, 等. 三级轴向旋流燃烧室流场结构研究[J]. 推进技术, 2018, 39(8): 1821-1828. doi: 10.13675/j.cnki.tjjs.2018.08.017

    CHEN L J, LE J L, ZHANG J, et al. Experimental investigation of flow field in an aero-engine combustor with triple-stage axial-rotating swirling[J]. Journal of Propulsion Technology, 2018, 39(8): 1821-1828. doi: 10.13675/j.cnki.tjjs.2018.08.017
    [36] CHENF, LIU H. Particle image velocimetry for combustion measurements: Applications and developments[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1407-1427. doi: 10.1016/j.cja.2018.05.010
    [37] SO R M C, AHMED S A, MONGIA H C. Jet characteristics in confined swirling flow[J]. Experiments in Fluids, 1985, 3(4): 221-230. doi: 10.1007/bf00265105
    [38] KAO Y H, TAMBE S B, JENG S M. Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2013-94280
    [39] KAO Y H, TAMBE S B, JENG S M. Aerodynamics study of a linearly-arranged 5-swirler array[C]//Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. 2014. doi: 10.1115/GT2014-25094
    [40] HUO W Y, LIN Y Z, ZHANG C, et al. Effect of boundary conditions on downstream vorticity from counter-rotating swirlers[J]. Chinese Journal of Aeronautics, 2015, 28(1): 34-43. doi: 10.1016/j.cja.2014.12.014
    [41] FAN X J, LIU C X, XU G, et al. Experimental investigations of the spray structure and interactions between sectors of a double-swirl low-emission combustor[J]. Chinese Journal of Aeronautics, 2020, 33(2): 589-597. doi: 10.1016/j.cja.2019.09.009
    [42] GIRIDHARAN M G, MONGIA H C, JENG S-M. Swirl cup modeling-Part Ⅷ: Spray combustion in CFM-56 single cup flame tube[R]. AIAA 2003-0319, 2003. doi: 10.2514/6.2003-319
    [43] MONGIA H C, GORE J P, GRINSTEIN F F, et al. Combustion research needs for helping development of next-generation advanced combustors[R]. AIAA 2001-3583, 2001.
    [44] COLBY J A, MENON S, JAGODA J. Spray and emission characteristics near lean blow out in a counter-swirl stabilized gas turbine combustor[C]//Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2006-90974
    [45] DRISCOLL J F, TEMME J. Role of swirl in flame stabilization[R]. AIAA 2011-108, 2011.
    [46] FOUST M, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[R]. AIAA 2012-936, 2012. doi: 10.2514/6.2012-936
    [47] LAZIK W, DOERR T, BAKE S, et al. Development of Lean-burn low-NOx combustion technology at rolls-Royce Deutschland[C]// Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2008-51115
    [48] MEIER U, FREITAG S, HEINZE J, et al. Characterisation of lean burn module air blast pilot injector with laser techniques[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013.
    [49] 吴浩玮, 陈浩, 刘存喜, 等. 预燃级内级旋流对燃烧室点/熄火性能的影响[J]. 燃烧科学与技术, 2017, 23(6): 560-566. doi: 10.11715/rskxjs.R201611016

    WU H W, CHEN H, LIU C X, et al. Effect of pilot-inner-staged swirl on ignition and blowout performance of combustor[J]. Journal of Combustion Science and Technology, 2017, 23(6): 560-566. doi: 10.11715/rskxjs.R201611016
    [50] LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. doi: 10.1115/1.4037451
    [51] YANG J H, LIU C X, LIU F Q, et al. Experimental and numerical study of the effect of main stage stratifier length on lean blow-out performance for a stratified partially premixed injector[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(7): 812-825. doi: 10.1177/0957650918758227
  • 加载中
图(30)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  259
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-06-09
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日